thomas alwa edison
+2
NrShSt.Sh€yDa
mirokral
6 posters
1 sayfadaki 1 sayfası
thomas alwa edison
Thomas Alva Edison
Thomas Alva Edison (d. 11 Şubat 1847 – ö. 18 Ekim 1931) 20. yüzyıl yaşamını icatlarıyla büyük bir şekilde etkileyen Amerikalı mucit ve iş adamıdır. Bazı icatları tamamen orjinal olmakla birlikte, eski icatların geliştirilmesi veya yönetimi altında çalışan yüzlerce çalışana aittir. Yine de Edison elinde bulundurduğu kendi adını taşıyan[1] Amerikan patentiyle tarihteki en önemli ve en verimli mucitlerden biri olarak nitelendirilir. Patentlerinin çoğu Amerika'nın haricinde Almanya, Fransa ve İngiltere onaylarına da sahiptir.
Hayatı
Thomas Edison, Ohio eyaletinin Milan kasabasında Samuel Ogden Edison, Jr. ve Nancy Matthews Elliott'un (1810–1871) yedinci çocukları olarak doğdu. Yedi yaşındayken ailesiyle birlikte Michigan'daki Port Huron'a yerleşen Edison, ilköğrenimine yaşadığı bir hastalık dolayısıyla geç başladı. Ancak yaklaşık üç ay sonra algılamasının yavaşlığı nedeniyle okuldan uzaklaştırıldı. Kanada'da daha önce öğretmenlik yapmış olan annesi büyük bir zevkle oğlunun eğitimine evde devam ediyordu. Okuması ve tecrübe edinmesi için onu sık sık teşvik ediyordu ve onu sık sık kontrol ediyordu. Derslerinin çoğu çok iyiydi. Son derece meraklı ve yaratıcı kişiliğe sahip bir çocuk olan Edison, 10 yaşına geldiğinde kendisini fizik ve kimya kitaplarına verdi.Bu arada evlerinin kilerinde bir kimya laboratuvarı kurdu. Özellikle kimya deneylerine ve Volta kaplarından elektrik akımı elde etmeye yönelik araştırmalara ilgi duydu; bir süre sonra arkadaşıyla telgraf yaptı ve Mors alfabesini öğrendi. 12 yaşındaysa duymada güçlük yaşamaya başladı. Bunun sebebi olarak birçok teori ortaya atıldıysa da, Edison'a göre kendisi sağır oldu çünkü kendi kulakları tarafından bir tren vagonuna çekilmişti. 12 yaşına geldiğinde ailesine yardım etmek için Port Huron ile Detroit arasında çalışan trende gazete ve şekerleme satmaya başlayan, ömrünü kurtardığı Jimmie Mackenzie tarafından telgraf operatörlüğü işine başladı. Jimmie'nin Michigan'daki Clemen Dağları'nda J.U. Mackenzie istasyon temsilcisi babası, oğlunun Edison'u kendi kanatları altına almasını ve onu yetiştirmesinden çok minnettardı. Edison'un sağırlığı onu etkilemişti ve yanındaki telegraftan gelen sesleri tekrar duyması için onu teşfik etti. Bu dönemde Edison, telgırafıyla uğraştı arkadaşıda yanında ona yardım ediyordu"mükemmel icat adlı yapıtını okudu ve derinden etkilendi. Bunun üzerine bir yandan komşusunun deneylerini tekrarladı bir yandanda kendi deneylerine ağırlık vererek daha düzenli çalışmaya ve notlar tutmaya başladı. O yıllardaki akıl hocalarından biride telegrafcı ve kaşif Franklin Leonard Pope'tu. Kendisi fakirleşen Edison'a çalışması ve yaşaması için Elizabeth, New Jersey'deki yerini kullanmasına izin verdi.
Elektrikli telgrafla alakalı ilk buluşlarından biride borsadaki değerleri kaydeden bir cihazdı stock ticker. Edison'un kabul görmüş ilk icadı elektrikli oy kaydediciydi, 28 Ekim 1868.
Evliliği
24 Aralık 1871 yılında, 2 ay önce tanışmış olduğu 16 yaşındaki Mary Stilwell ile evlendi. Üç çocukları oldu: Marion Estelle Edison (bilinen adıyla Dot), Thomas Alva Edison, Jr. (bilinen adıyla Dash) ve William Leslie Edison. Mary Edison 9 Ağustos 1884'te hayatını kaybetti.
1880'lerde Fort Myers, Florida'dan bir arsa satın aldı ve daha sonra burda kışları kalmak için kendine küçük bir ev inşa ettirdi. Otomobil endüstrisinin büyük adamı Henry Ford yakın bir zaman sonra Edison'un evinin birkaç yüz metre ötesine taşındı. Bu nedenle Edison ve Ford ölene dek arkadaş kaldılar. 24 Şubat 1886 Edison ikinci evliliğini 19 yaşındaki Mina Miller ile gerçekleştirdi. Bu evliliğinden de üç çocuk sahibi oldu: Madeleine Edison, Charles Edison, ve Theodore Edison.
Thomas Alva Edison, kariyerine New Jersey'deki Newark'ta otomatik tekrarlayıcı ve geliştirilmiş telgraf cihazları ile mucit olarak başlamıştır. Ancak ona ün kazandıran ilk keşfi 1877 yılında geliştirdiği fonograftı. Bu başarı halk tarafından çok beklenmedik karşılanmış ve genelde büyülü olarak görünmüştür. Edison o zamanlarda yaşadığı şehir olan "Menlo Park'ın Büyücüsü" diye de bilinir. Edison'un fonografı kayıtlarını çok ince, kalay yaprağından yapılmış bir silindire gerçekleştirildiğinden kayıtlar sadece birkaç kez dinlenebilirdi. 1880'lerde balmumuyla kaplanmış karton silindirler kullanılan yeni modeller Alexander Graham Bell, Chichester Bell ve Charles Tainter tarafından üretilmeye başladı. Thomas Edison'un "Mükemmel Fonograf"ı yapmak için çalışmalarına devam etmesinin sebeplerinden biri de budur.
Thomas Edison özgür düşünceli biriydi ve yanlısıydı. İlahiyatçı kesimin çizdiği Tanrı portresine inanmıyordu ancak ulu bir güce olan inancından da şüphe etmiyordu. ruhu çok önemliydin varlığını kesinlikle redediyordu. İnanışıyla ilgili pozisyonunu Hristiyan inanışıyla saldırgan agnostisizm arasında bir yer olarak tanımlıyordu.
Menlo Park
Thomas Edison'un icadının çalışma şeklini sergilemek üzere geliştirdiği Menlo Park'taki ilk ampulu
23898 numarayla Amerikan patentine sahip Elektrik Ampulu
Edison'un en önemli keşfi Menlo Park, New Jersey'deki ilk endüstriyel araştırma laboratuarıydı. Sürekli olarak teknolojik keşifler ve geliştirmeler-iyileştirmeler yapmak gibi özel bir amaç için kurulmuş ilk kurumdu. Edison birçok icadını resmi olarak bu labaratuarda üretmiş, birçok çalışanı onun direktifleri doğrultusunda bu icatların araştırma ve geliştirmesinde görev almıştır.
Elektrik mühendisi William Joseph Hammer, 1879 Aralık'ında Edisonun labaratuar asistanı olarak görevine başlamıştır. Telefon, fonograf, elektrikli tren, demir madeni ayıracı, elektrikli aydınlatma ve diğer birçok icatta büyük katkılarda bulunmuştur. Hammer'ı özel kılansa elektrik ampulünün icadındaki ve bu aletin geliştirme ve testleri sırasındaki çalışmalarıdır. Hummer 1880'de Edison'un lamba çalışmalarının şef mühendisi olmuş, bu mevkiideki ilk yılında Francis Robbins Upton'ın genel müdürlüğünü yaptığı fabrika 50.000 ampul üretmiştir. Edison'a göre Hammer elektrik ampulünün bir öncüsüdür. 1000e yakın patenti bulunmaktadır.
Thomas Alva Edison (d. 11 Şubat 1847 – ö. 18 Ekim 1931) 20. yüzyıl yaşamını icatlarıyla büyük bir şekilde etkileyen Amerikalı mucit ve iş adamıdır. Bazı icatları tamamen orjinal olmakla birlikte, eski icatların geliştirilmesi veya yönetimi altında çalışan yüzlerce çalışana aittir. Yine de Edison elinde bulundurduğu kendi adını taşıyan[1] Amerikan patentiyle tarihteki en önemli ve en verimli mucitlerden biri olarak nitelendirilir. Patentlerinin çoğu Amerika'nın haricinde Almanya, Fransa ve İngiltere onaylarına da sahiptir.
Hayatı
Thomas Edison, Ohio eyaletinin Milan kasabasında Samuel Ogden Edison, Jr. ve Nancy Matthews Elliott'un (1810–1871) yedinci çocukları olarak doğdu. Yedi yaşındayken ailesiyle birlikte Michigan'daki Port Huron'a yerleşen Edison, ilköğrenimine yaşadığı bir hastalık dolayısıyla geç başladı. Ancak yaklaşık üç ay sonra algılamasının yavaşlığı nedeniyle okuldan uzaklaştırıldı. Kanada'da daha önce öğretmenlik yapmış olan annesi büyük bir zevkle oğlunun eğitimine evde devam ediyordu. Okuması ve tecrübe edinmesi için onu sık sık teşvik ediyordu ve onu sık sık kontrol ediyordu. Derslerinin çoğu çok iyiydi. Son derece meraklı ve yaratıcı kişiliğe sahip bir çocuk olan Edison, 10 yaşına geldiğinde kendisini fizik ve kimya kitaplarına verdi.Bu arada evlerinin kilerinde bir kimya laboratuvarı kurdu. Özellikle kimya deneylerine ve Volta kaplarından elektrik akımı elde etmeye yönelik araştırmalara ilgi duydu; bir süre sonra arkadaşıyla telgraf yaptı ve Mors alfabesini öğrendi. 12 yaşındaysa duymada güçlük yaşamaya başladı. Bunun sebebi olarak birçok teori ortaya atıldıysa da, Edison'a göre kendisi sağır oldu çünkü kendi kulakları tarafından bir tren vagonuna çekilmişti. 12 yaşına geldiğinde ailesine yardım etmek için Port Huron ile Detroit arasında çalışan trende gazete ve şekerleme satmaya başlayan, ömrünü kurtardığı Jimmie Mackenzie tarafından telgraf operatörlüğü işine başladı. Jimmie'nin Michigan'daki Clemen Dağları'nda J.U. Mackenzie istasyon temsilcisi babası, oğlunun Edison'u kendi kanatları altına almasını ve onu yetiştirmesinden çok minnettardı. Edison'un sağırlığı onu etkilemişti ve yanındaki telegraftan gelen sesleri tekrar duyması için onu teşfik etti. Bu dönemde Edison, telgırafıyla uğraştı arkadaşıda yanında ona yardım ediyordu"mükemmel icat adlı yapıtını okudu ve derinden etkilendi. Bunun üzerine bir yandan komşusunun deneylerini tekrarladı bir yandanda kendi deneylerine ağırlık vererek daha düzenli çalışmaya ve notlar tutmaya başladı. O yıllardaki akıl hocalarından biride telegrafcı ve kaşif Franklin Leonard Pope'tu. Kendisi fakirleşen Edison'a çalışması ve yaşaması için Elizabeth, New Jersey'deki yerini kullanmasına izin verdi.
Elektrikli telgrafla alakalı ilk buluşlarından biride borsadaki değerleri kaydeden bir cihazdı stock ticker. Edison'un kabul görmüş ilk icadı elektrikli oy kaydediciydi, 28 Ekim 1868.
Evliliği
24 Aralık 1871 yılında, 2 ay önce tanışmış olduğu 16 yaşındaki Mary Stilwell ile evlendi. Üç çocukları oldu: Marion Estelle Edison (bilinen adıyla Dot), Thomas Alva Edison, Jr. (bilinen adıyla Dash) ve William Leslie Edison. Mary Edison 9 Ağustos 1884'te hayatını kaybetti.
1880'lerde Fort Myers, Florida'dan bir arsa satın aldı ve daha sonra burda kışları kalmak için kendine küçük bir ev inşa ettirdi. Otomobil endüstrisinin büyük adamı Henry Ford yakın bir zaman sonra Edison'un evinin birkaç yüz metre ötesine taşındı. Bu nedenle Edison ve Ford ölene dek arkadaş kaldılar. 24 Şubat 1886 Edison ikinci evliliğini 19 yaşındaki Mina Miller ile gerçekleştirdi. Bu evliliğinden de üç çocuk sahibi oldu: Madeleine Edison, Charles Edison, ve Theodore Edison.
Thomas Alva Edison, kariyerine New Jersey'deki Newark'ta otomatik tekrarlayıcı ve geliştirilmiş telgraf cihazları ile mucit olarak başlamıştır. Ancak ona ün kazandıran ilk keşfi 1877 yılında geliştirdiği fonograftı. Bu başarı halk tarafından çok beklenmedik karşılanmış ve genelde büyülü olarak görünmüştür. Edison o zamanlarda yaşadığı şehir olan "Menlo Park'ın Büyücüsü" diye de bilinir. Edison'un fonografı kayıtlarını çok ince, kalay yaprağından yapılmış bir silindire gerçekleştirildiğinden kayıtlar sadece birkaç kez dinlenebilirdi. 1880'lerde balmumuyla kaplanmış karton silindirler kullanılan yeni modeller Alexander Graham Bell, Chichester Bell ve Charles Tainter tarafından üretilmeye başladı. Thomas Edison'un "Mükemmel Fonograf"ı yapmak için çalışmalarına devam etmesinin sebeplerinden biri de budur.
Thomas Edison özgür düşünceli biriydi ve yanlısıydı. İlahiyatçı kesimin çizdiği Tanrı portresine inanmıyordu ancak ulu bir güce olan inancından da şüphe etmiyordu. ruhu çok önemliydin varlığını kesinlikle redediyordu. İnanışıyla ilgili pozisyonunu Hristiyan inanışıyla saldırgan agnostisizm arasında bir yer olarak tanımlıyordu.
Menlo Park
Thomas Edison'un icadının çalışma şeklini sergilemek üzere geliştirdiği Menlo Park'taki ilk ampulu
23898 numarayla Amerikan patentine sahip Elektrik Ampulu
Edison'un en önemli keşfi Menlo Park, New Jersey'deki ilk endüstriyel araştırma laboratuarıydı. Sürekli olarak teknolojik keşifler ve geliştirmeler-iyileştirmeler yapmak gibi özel bir amaç için kurulmuş ilk kurumdu. Edison birçok icadını resmi olarak bu labaratuarda üretmiş, birçok çalışanı onun direktifleri doğrultusunda bu icatların araştırma ve geliştirmesinde görev almıştır.
Elektrik mühendisi William Joseph Hammer, 1879 Aralık'ında Edisonun labaratuar asistanı olarak görevine başlamıştır. Telefon, fonograf, elektrikli tren, demir madeni ayıracı, elektrikli aydınlatma ve diğer birçok icatta büyük katkılarda bulunmuştur. Hammer'ı özel kılansa elektrik ampulünün icadındaki ve bu aletin geliştirme ve testleri sırasındaki çalışmalarıdır. Hummer 1880'de Edison'un lamba çalışmalarının şef mühendisi olmuş, bu mevkiideki ilk yılında Francis Robbins Upton'ın genel müdürlüğünü yaptığı fabrika 50.000 ampul üretmiştir. Edison'a göre Hammer elektrik ampulünün bir öncüsüdür. 1000e yakın patenti bulunmaktadır.
mirokral-
Mesaj Sayısı : 254
Yaş : 29
Lakap : mirokral
Kayıt tarihi : 25/10/08
pisagor
Pisagor (M.Ö. 596 - 500)
Samos’lu Pisagor’un, Milattan önce 596 yıllarında doğduğu tahmin ediliyor. Doğumu gibi ölüm tarihi de kesin değildir. Bugünkü adıyla bilinen Sisam Adasında 596 veya 582 yılında doğmuştur. Hayatı hakkında çok az bilgiler vardır. Bu bilgilerin birçoğu da kulaktan kulağa söylentiler biçiminde gelmiştir. Fakat, önceleri doğduğu yer olan Sisam Adasında okuduğu, daha sonraları Mısır ve Babil’e giderek oralarda bilgilerini ilerlettiği ve ülkesine geri dönerek dersler verdiği söylenir. Kendisinden önceki bilgilerin tümünü öğrenmiş ve derlemiştir. Kendisi, bir Yunan filozofu ve matematikçisidir. Ülkesinde hüküm süren politik baskılardan kaçarak, İtalya’nın güneyindeki Kroton şehrine gelmiş ve ünlü okulunu burada açarak şöhrete kavuşmuştur. Yarı söylentilere göre felsefe okulunun kurucusudur. Bu okul aynı zamanda dini bir topluluk ve o zamanın politikasına oldukça egemendir. Yine söylentilere göre, Pisagor’un matematik, fizik, astronomi, felsefe ve müzikte getirmek istediği yenilik, buluşlar ve ışıkları hazmedemeyen bir takım siyaset ve din yobazları halkı Pisagor’a karşı ayaklandırarak okulunu ateşe vermişler, Pisagor ve öğrencileri bu okulun içinde alevler arasında M.Ö. 500 yıllarında ölmüşlerdir. Bu nedenle Pisagor ve yaptıkları hakkında az bilgiler bize kadar gelmiştir. Pisagor’un ve öğrencilerinin yaptıklarının birçoğu bu alevler arasında yok olup gitmiştir.
Pisagor, M.Ö. altıncı yüzyılda, dünyanın güneş etrafında hareket ettiğini ileri sürdüğü zaman oldukça sert olan bir hareketle karşılaşmıştır. O tarihlerde kağıt olmadığı için, bu buluşlarını nasıl elde edildiği, yine bu devirlerdeki bilgilerin hangisinin Pisagor’a ait olduğu kesin olarak bilinmemektedir. Hatta, okuldaki öğretim araçlarının masa üzerindeki ıslak kum olduğu söylenir. Bu koşullar altındaki ilmi gerçeklerin tümü o zaman yazıya geçmediği için, birçoğu da zamanla kaybolup gitmiştir. Bu nedenle, Pisagor’un okulu ve öğrencileri ile birlikte yanmalarından, eser bırakıp bırakmadığı da kesin olarak belli değildir. Geometride, aksiyomlar ve postülatlar her şeyden önce gelmelidir. Sonuçlar bu aksiyom ve postülatlardan yararlanılarak elde edilmelidir düşüncesini ilk bulan ve ilk uygulayan matematikçi Pisagor’dur. Matematiğe aksiyomatik düşünceyi ve ispat fikrini getiren yine Pisagor’dur. Çarpma cetvelinin bulunuşu ve geometriye uygulanması, yine Pisagor tarafından yapıldığı söylenir. En önemli buluşlarından biri de, doğadaki her şeyin matematiksel olarak açıklanması ve yorumlanması düşüncesidir. Yaşayış ve inanışı, ilimle açıklama ve yorumlamayı o getirmiştir.
Müzik üzerine de çalışmaları vardır. Müzik tonlarının, telin uzunluğunun oranlarına bağlı olduğunu keşfetmiş ve bunun tüm sayılara yorumlamasını düşünmüştür. Bir yerde bugünkü gerçel ekseni söylemeden düşünmüştür. Bu da, bugünkü kullandığımız gerçel eksenin sayı sisteminde kullanılmasından başka bir şey değildir. Fakat, eski Yunan matematikçileri gerçel sayıları bilmiyorlardı. O zamanlar, rasyonel sayıları uzunlukları ölçmek için kullanıyorlardı. Bunun için belli bir birim alıyorlar ve bu birime oranlayarak iki nokta arasındaki uzunluğu ölçüyorlardı. Rasyonel sayılarla ölçülemeyen uzunluğun keşfi 2600 yıl önce Yunan matematikçileri tarafından olmuştur. Bu sonuçta, halen değerini koruyan ve koruyacak olan ünlü Pisagor teoremine dayanır. Pisagor teoremi, matematikteki en büyük buluşlardan biridir. Hele zamanımızdan 2600 yıl önce bulunduğu göz önüne alınırsa, bundan daha büyük bir buluş düşünülemez. Pisagor’un adını 2600 yıldır andıran, onu ünlü yapan ve insanlığın varolduğu sürece de sonsuza kadar da andıracak meşhur teoremi şudur: Bir dik üçgende, dik kenarlar üzerine kurulan karelerin alanlarının toplamı, hipotenüs üzerine kurulan karenin alanına eşittir.
Pisagor teoremi, rasyonel sayılarla ölçülemeyen uzunluğun da varolduğunu gösterir. Örneğin, yukarıdaki şekilde olduğu gibi, dik kenarları birer birim olan dik üçgeni göz önüne alalım. Geometrik olarak, bu özel hal için, Pisagor teoremi gerçeklenir. Yani, büyük karenin alanı, dik kenarlar üzerine kurulan karelerin alanları toplamıdır. Diğer bir deyimle, x2=2 olur. Bu denklemin kökü de rasyonel olmayan karekök 2 uzunluğudur. Yunan matematikçileri gerçel sayılan bilmiyorlardı. Üstün zekalı Eudoxos tarafından bulunan oranlama yöntemini kullanıyorlardı. Aslında, gerçel sayıların oluşumu kavramı bir ya da birçok insanın buluşu değildir. Rasyonel sayıların günlük hayatta kullanılması sırasında kendi kendine gelişmiştir. On tabanına göre sayıların sayılması ve yazılması, büyük bir olasılıkla iki eldeki parmakların sayılmasından doğmuştur. Şu sırada bile ilkel yaşam sürdüren bazı kabilelerde buna benzer sayma yöntemi vardır. On tabanına göre sayıların yazılması ve okunması, Avrupa’ya Crusades’ten sonra Arap dünyasından gelmiştir. Bunu Araplar Hintlilerden, Hintliler de Helen medeniyetinden aldılar. Yunan’lı astronomlar bu sayı sistemini, M.Ö. 1500 yıllarından beri kullanan, Babil’lilerden almışlardır. “Evrenin hakimi sayıdır. Sayılar evreni yönetiyor” sözleri de Pisagor’a aittir.
Pisagor, Archimedes’ten oldukça farklıdır. Pisagor hem mistik ve hem de matematikçidir. Mistik tarafları çoktur. Bunlar, efsaneleşmiş bir biçimde destan olarak anlatılmış, evren hakkında bu günkü gerçeklere uymayan düşünceler de ileri sürmüştür. Bunları bir tarafa bırakırsak, yine yaşadığı çağa göre matematikçi yönü çok ağır basar. Pisagor, Mısır’da ve Babil’de çok gezdi. Rahiplerden ilim öğrendi. Çok tanrılı olan o zamanın dini inançlarını benimsedi. Yaşadığı çağı ve aldığı rahip eğitimi göz önüne alınırsa, bunda yadırganacak pek bir şey de yoktur. Oldukça doğaldır. Matematiğe ispat fikrini getiren Pisagor için, sosyal ve şahsi yaşantısı bu kadar eleştiriye değmez. Yalnız, Pisagor ve bazı Yunan filozofları, örneğin, Euclides, Eflatun ve Aristo gibi alimleri, yaşadığı devirlerde, bugün için bilinen ilmi gerçeklerde hataya düşmüşlerdir. Bu filozofların felsefeleri, modern matematiğin kurucusu Descartes (1596-1650) ve Newton (1564-1642) kadar, modern fiziğin kurucusu Galile (1564-1642) ve modern kimyanın kurucusu olan Lavoisier (1743-1794) zamanına kadar iki bin yıllık bir gecikmeye neden olmuşlardır. Eğer Yunan’lılar Euclides, Eflatun ve Aristo yerine Archimedes’i izlemiş olsalardı, Descartes, Newton, Galile ve Lavoisier’in kurdukları modern ilme iki bin yıl önce ulaşır ve bugün içinde bulunduğumuz medeniyete iki bin yıl önce varılırdı. Yani, Archimedes’le Newton, Galile ve Lavoisier arasında tam iki bin yıllık ilmi boşluk vardır. Bu boşlukta kolay kolay doldurulamaz. Bu nedenle, Yunan’lıların medeniyetin ilerlemesine iki bin yıllık bir gecikmeye sebep oldukları bir gerçektir. Avrupa’da uzun yıllar egemen olan ve hüküm süren skolastik düşüncenin temeli Yunanistan’da atılmış ve İtalya’da geliştirilmiştir. Bu nedenle de uzun yıllar bu skolastik düşünce yenilememiştir. Bu uğurda çok sayıda ilim adamı yok edilmiştir.
Pisagor’dan önce, geometride, şekillerin aralarındaki bağlılıklar gösterilmeksizin elde edilenler, görenek ve tecrübeye dayanan bir takım kurallardı. Bu nedenle, daha gelen bir yetkili ne demişse o sürüp gidiyordu. Pisagor’un matematiğe ispat fikrini sokması bu yüzden çok önemlidir. O çağlarda çok tanrılı din vardı. Pisagor daha da ileri gidiyor ve “tanrı sayıdır” diyordu. Bu sayılar, 1, 2, 3…, şeklinde bugün bildiğimiz doğal sayılardı. Daha sonra, kendi kendine bir çelişkiye düştüğünü, tamsayıların hatta rasyonel sayıların bile matematiğe yetmediğini, kendi adıyla anılan Pisagor teoremiyle gördü. Buna bir süre karşı da çıktı. Fakat, sonunda bu yenilgiyi kabul etmesini de bilmiştir. Olayda karekök 2 şeklinde rasyonel bir uzunluğun olmaması problemidir. Halbuki Pisagor teoremine göre böyle bir uzunluk vardır. Pisagor’un kuramını yıkan problem, a2=2b2 denklemini gerçekleyen a ve b gibi iki tamsayıyı bulmak olanaksızdır. Pisagor’un karşılaştığı ikinci güçlük, bir karenin kenarının köşegenine bölümünün rasyonel bir sayı olmayışıdır. Bu söylediğimiz, a2=2b2 denkleminde adı geçen olaya eşdeğer olduğu açıktır. Bu problemi bugünkü matematik diliyle söylersek, karekök 2 sayısı irrasyonel bir sayıdır. İşte, karenin köşegeni gibi basit bir uzunluk, Pisagor’un doğal sayılar kümesine meydan okuyarak, Pisagor’un ilk felsefe kuramını yalanlamıştır. Böylece, hiç bir zaman tekrar etmeyen sonsuz ondalıklı olan irrasyonel sayı bulunmuş olunur. Pisagor’un bu buluşu, modern analizin kökünü keşfetmiştir. Bu problem bir yerde, sıfır ile iki sayısı arasını rasyonel sayılarla kaplayabilir miyiz sorusunu doğurur. Yanıt hemen hayır olacaktır. Çünkü, 0<karekök 2<2 olan karekök 2 sayısı rasyonel değildir. 1,41 ile 1,42 sayıları arasında rasyonel olmayan bir sayıdır. Öyleyse, sayı doğrusu üzerindeki her bir noktaya bir gerçel sayı karşılık gelir postülatını şimdilik kabul edebiliriz. Bu görüşe Pisagor’culuk denir ve bu görüşe ileride Kronecker tarafından itiraz edileceğini hemen söyleyelim.
İşte, sayı doğrusu üzerinde rasyonel sayılarla sıfır sayısından iki sayısına sürekli olarak gitmek mümkün diyenlerle, mümkün değildir diyenler arasında uzun yıllar tartışma olmuştur. Yüzyılımızda çıkan Brouwer’e kadar bu tartışma çeşitli şekillerde karşımıza çıkmıştır. Mümkün değil diyenler hiç bir ilerleme göstermeden yerinde saymışlar ve az hata yapmışlar fakat, mümkün diyenlerse çalışarak ve biraz da fazla hata yaparak bugünkü modern matematiğe ulaşmışlardır. Doğrunun sürekli olup olmadığı uzun yıllar tartışılmıştır. Pisagor, bu kuramlarla, sayılar aracılığıyla ve kendi yöntemleriyle evrenin doğal dengesini ve evrendeki cisimlerin ilişkilerini açıklamaya çalışmıştır. Şüphesiz, bu görüş ve düşünüşlerin birçoğu bugün geçerli değildir. Yine de, modern matematiğin temelini Pisagor atmıştır. Halbuki, M.Ö. 500-428 yıllarında Pisagor devrinde yaşamış olan Anaksgoras, Güneş’i, Dünya’dan kat kat daha büyük kızgın bir demir kütlesi olarak tanımlamıştır. Ay ışığının Güneş’ten gelen ışınların bir yansıması olduğunu da öne süren kişi olduğu da sanılmaktadır. Bu nedenle, Pisagor mistik olduğu kadar üstün zekalı bir matematikçidir sıfatları yerinde kullanılmıştır.
Samos’lu Pisagor’un, Milattan önce 596 yıllarında doğduğu tahmin ediliyor. Doğumu gibi ölüm tarihi de kesin değildir. Bugünkü adıyla bilinen Sisam Adasında 596 veya 582 yılında doğmuştur. Hayatı hakkında çok az bilgiler vardır. Bu bilgilerin birçoğu da kulaktan kulağa söylentiler biçiminde gelmiştir. Fakat, önceleri doğduğu yer olan Sisam Adasında okuduğu, daha sonraları Mısır ve Babil’e giderek oralarda bilgilerini ilerlettiği ve ülkesine geri dönerek dersler verdiği söylenir. Kendisinden önceki bilgilerin tümünü öğrenmiş ve derlemiştir. Kendisi, bir Yunan filozofu ve matematikçisidir. Ülkesinde hüküm süren politik baskılardan kaçarak, İtalya’nın güneyindeki Kroton şehrine gelmiş ve ünlü okulunu burada açarak şöhrete kavuşmuştur. Yarı söylentilere göre felsefe okulunun kurucusudur. Bu okul aynı zamanda dini bir topluluk ve o zamanın politikasına oldukça egemendir. Yine söylentilere göre, Pisagor’un matematik, fizik, astronomi, felsefe ve müzikte getirmek istediği yenilik, buluşlar ve ışıkları hazmedemeyen bir takım siyaset ve din yobazları halkı Pisagor’a karşı ayaklandırarak okulunu ateşe vermişler, Pisagor ve öğrencileri bu okulun içinde alevler arasında M.Ö. 500 yıllarında ölmüşlerdir. Bu nedenle Pisagor ve yaptıkları hakkında az bilgiler bize kadar gelmiştir. Pisagor’un ve öğrencilerinin yaptıklarının birçoğu bu alevler arasında yok olup gitmiştir.
Pisagor, M.Ö. altıncı yüzyılda, dünyanın güneş etrafında hareket ettiğini ileri sürdüğü zaman oldukça sert olan bir hareketle karşılaşmıştır. O tarihlerde kağıt olmadığı için, bu buluşlarını nasıl elde edildiği, yine bu devirlerdeki bilgilerin hangisinin Pisagor’a ait olduğu kesin olarak bilinmemektedir. Hatta, okuldaki öğretim araçlarının masa üzerindeki ıslak kum olduğu söylenir. Bu koşullar altındaki ilmi gerçeklerin tümü o zaman yazıya geçmediği için, birçoğu da zamanla kaybolup gitmiştir. Bu nedenle, Pisagor’un okulu ve öğrencileri ile birlikte yanmalarından, eser bırakıp bırakmadığı da kesin olarak belli değildir. Geometride, aksiyomlar ve postülatlar her şeyden önce gelmelidir. Sonuçlar bu aksiyom ve postülatlardan yararlanılarak elde edilmelidir düşüncesini ilk bulan ve ilk uygulayan matematikçi Pisagor’dur. Matematiğe aksiyomatik düşünceyi ve ispat fikrini getiren yine Pisagor’dur. Çarpma cetvelinin bulunuşu ve geometriye uygulanması, yine Pisagor tarafından yapıldığı söylenir. En önemli buluşlarından biri de, doğadaki her şeyin matematiksel olarak açıklanması ve yorumlanması düşüncesidir. Yaşayış ve inanışı, ilimle açıklama ve yorumlamayı o getirmiştir.
Müzik üzerine de çalışmaları vardır. Müzik tonlarının, telin uzunluğunun oranlarına bağlı olduğunu keşfetmiş ve bunun tüm sayılara yorumlamasını düşünmüştür. Bir yerde bugünkü gerçel ekseni söylemeden düşünmüştür. Bu da, bugünkü kullandığımız gerçel eksenin sayı sisteminde kullanılmasından başka bir şey değildir. Fakat, eski Yunan matematikçileri gerçel sayıları bilmiyorlardı. O zamanlar, rasyonel sayıları uzunlukları ölçmek için kullanıyorlardı. Bunun için belli bir birim alıyorlar ve bu birime oranlayarak iki nokta arasındaki uzunluğu ölçüyorlardı. Rasyonel sayılarla ölçülemeyen uzunluğun keşfi 2600 yıl önce Yunan matematikçileri tarafından olmuştur. Bu sonuçta, halen değerini koruyan ve koruyacak olan ünlü Pisagor teoremine dayanır. Pisagor teoremi, matematikteki en büyük buluşlardan biridir. Hele zamanımızdan 2600 yıl önce bulunduğu göz önüne alınırsa, bundan daha büyük bir buluş düşünülemez. Pisagor’un adını 2600 yıldır andıran, onu ünlü yapan ve insanlığın varolduğu sürece de sonsuza kadar da andıracak meşhur teoremi şudur: Bir dik üçgende, dik kenarlar üzerine kurulan karelerin alanlarının toplamı, hipotenüs üzerine kurulan karenin alanına eşittir.
Pisagor teoremi, rasyonel sayılarla ölçülemeyen uzunluğun da varolduğunu gösterir. Örneğin, yukarıdaki şekilde olduğu gibi, dik kenarları birer birim olan dik üçgeni göz önüne alalım. Geometrik olarak, bu özel hal için, Pisagor teoremi gerçeklenir. Yani, büyük karenin alanı, dik kenarlar üzerine kurulan karelerin alanları toplamıdır. Diğer bir deyimle, x2=2 olur. Bu denklemin kökü de rasyonel olmayan karekök 2 uzunluğudur. Yunan matematikçileri gerçel sayılan bilmiyorlardı. Üstün zekalı Eudoxos tarafından bulunan oranlama yöntemini kullanıyorlardı. Aslında, gerçel sayıların oluşumu kavramı bir ya da birçok insanın buluşu değildir. Rasyonel sayıların günlük hayatta kullanılması sırasında kendi kendine gelişmiştir. On tabanına göre sayıların sayılması ve yazılması, büyük bir olasılıkla iki eldeki parmakların sayılmasından doğmuştur. Şu sırada bile ilkel yaşam sürdüren bazı kabilelerde buna benzer sayma yöntemi vardır. On tabanına göre sayıların yazılması ve okunması, Avrupa’ya Crusades’ten sonra Arap dünyasından gelmiştir. Bunu Araplar Hintlilerden, Hintliler de Helen medeniyetinden aldılar. Yunan’lı astronomlar bu sayı sistemini, M.Ö. 1500 yıllarından beri kullanan, Babil’lilerden almışlardır. “Evrenin hakimi sayıdır. Sayılar evreni yönetiyor” sözleri de Pisagor’a aittir.
Pisagor, Archimedes’ten oldukça farklıdır. Pisagor hem mistik ve hem de matematikçidir. Mistik tarafları çoktur. Bunlar, efsaneleşmiş bir biçimde destan olarak anlatılmış, evren hakkında bu günkü gerçeklere uymayan düşünceler de ileri sürmüştür. Bunları bir tarafa bırakırsak, yine yaşadığı çağa göre matematikçi yönü çok ağır basar. Pisagor, Mısır’da ve Babil’de çok gezdi. Rahiplerden ilim öğrendi. Çok tanrılı olan o zamanın dini inançlarını benimsedi. Yaşadığı çağı ve aldığı rahip eğitimi göz önüne alınırsa, bunda yadırganacak pek bir şey de yoktur. Oldukça doğaldır. Matematiğe ispat fikrini getiren Pisagor için, sosyal ve şahsi yaşantısı bu kadar eleştiriye değmez. Yalnız, Pisagor ve bazı Yunan filozofları, örneğin, Euclides, Eflatun ve Aristo gibi alimleri, yaşadığı devirlerde, bugün için bilinen ilmi gerçeklerde hataya düşmüşlerdir. Bu filozofların felsefeleri, modern matematiğin kurucusu Descartes (1596-1650) ve Newton (1564-1642) kadar, modern fiziğin kurucusu Galile (1564-1642) ve modern kimyanın kurucusu olan Lavoisier (1743-1794) zamanına kadar iki bin yıllık bir gecikmeye neden olmuşlardır. Eğer Yunan’lılar Euclides, Eflatun ve Aristo yerine Archimedes’i izlemiş olsalardı, Descartes, Newton, Galile ve Lavoisier’in kurdukları modern ilme iki bin yıl önce ulaşır ve bugün içinde bulunduğumuz medeniyete iki bin yıl önce varılırdı. Yani, Archimedes’le Newton, Galile ve Lavoisier arasında tam iki bin yıllık ilmi boşluk vardır. Bu boşlukta kolay kolay doldurulamaz. Bu nedenle, Yunan’lıların medeniyetin ilerlemesine iki bin yıllık bir gecikmeye sebep oldukları bir gerçektir. Avrupa’da uzun yıllar egemen olan ve hüküm süren skolastik düşüncenin temeli Yunanistan’da atılmış ve İtalya’da geliştirilmiştir. Bu nedenle de uzun yıllar bu skolastik düşünce yenilememiştir. Bu uğurda çok sayıda ilim adamı yok edilmiştir.
Pisagor’dan önce, geometride, şekillerin aralarındaki bağlılıklar gösterilmeksizin elde edilenler, görenek ve tecrübeye dayanan bir takım kurallardı. Bu nedenle, daha gelen bir yetkili ne demişse o sürüp gidiyordu. Pisagor’un matematiğe ispat fikrini sokması bu yüzden çok önemlidir. O çağlarda çok tanrılı din vardı. Pisagor daha da ileri gidiyor ve “tanrı sayıdır” diyordu. Bu sayılar, 1, 2, 3…, şeklinde bugün bildiğimiz doğal sayılardı. Daha sonra, kendi kendine bir çelişkiye düştüğünü, tamsayıların hatta rasyonel sayıların bile matematiğe yetmediğini, kendi adıyla anılan Pisagor teoremiyle gördü. Buna bir süre karşı da çıktı. Fakat, sonunda bu yenilgiyi kabul etmesini de bilmiştir. Olayda karekök 2 şeklinde rasyonel bir uzunluğun olmaması problemidir. Halbuki Pisagor teoremine göre böyle bir uzunluk vardır. Pisagor’un kuramını yıkan problem, a2=2b2 denklemini gerçekleyen a ve b gibi iki tamsayıyı bulmak olanaksızdır. Pisagor’un karşılaştığı ikinci güçlük, bir karenin kenarının köşegenine bölümünün rasyonel bir sayı olmayışıdır. Bu söylediğimiz, a2=2b2 denkleminde adı geçen olaya eşdeğer olduğu açıktır. Bu problemi bugünkü matematik diliyle söylersek, karekök 2 sayısı irrasyonel bir sayıdır. İşte, karenin köşegeni gibi basit bir uzunluk, Pisagor’un doğal sayılar kümesine meydan okuyarak, Pisagor’un ilk felsefe kuramını yalanlamıştır. Böylece, hiç bir zaman tekrar etmeyen sonsuz ondalıklı olan irrasyonel sayı bulunmuş olunur. Pisagor’un bu buluşu, modern analizin kökünü keşfetmiştir. Bu problem bir yerde, sıfır ile iki sayısı arasını rasyonel sayılarla kaplayabilir miyiz sorusunu doğurur. Yanıt hemen hayır olacaktır. Çünkü, 0<karekök 2<2 olan karekök 2 sayısı rasyonel değildir. 1,41 ile 1,42 sayıları arasında rasyonel olmayan bir sayıdır. Öyleyse, sayı doğrusu üzerindeki her bir noktaya bir gerçel sayı karşılık gelir postülatını şimdilik kabul edebiliriz. Bu görüşe Pisagor’culuk denir ve bu görüşe ileride Kronecker tarafından itiraz edileceğini hemen söyleyelim.
İşte, sayı doğrusu üzerinde rasyonel sayılarla sıfır sayısından iki sayısına sürekli olarak gitmek mümkün diyenlerle, mümkün değildir diyenler arasında uzun yıllar tartışma olmuştur. Yüzyılımızda çıkan Brouwer’e kadar bu tartışma çeşitli şekillerde karşımıza çıkmıştır. Mümkün değil diyenler hiç bir ilerleme göstermeden yerinde saymışlar ve az hata yapmışlar fakat, mümkün diyenlerse çalışarak ve biraz da fazla hata yaparak bugünkü modern matematiğe ulaşmışlardır. Doğrunun sürekli olup olmadığı uzun yıllar tartışılmıştır. Pisagor, bu kuramlarla, sayılar aracılığıyla ve kendi yöntemleriyle evrenin doğal dengesini ve evrendeki cisimlerin ilişkilerini açıklamaya çalışmıştır. Şüphesiz, bu görüş ve düşünüşlerin birçoğu bugün geçerli değildir. Yine de, modern matematiğin temelini Pisagor atmıştır. Halbuki, M.Ö. 500-428 yıllarında Pisagor devrinde yaşamış olan Anaksgoras, Güneş’i, Dünya’dan kat kat daha büyük kızgın bir demir kütlesi olarak tanımlamıştır. Ay ışığının Güneş’ten gelen ışınların bir yansıması olduğunu da öne süren kişi olduğu da sanılmaktadır. Bu nedenle, Pisagor mistik olduğu kadar üstün zekalı bir matematikçidir sıfatları yerinde kullanılmıştır.
mirokral-
Mesaj Sayısı : 254
Yaş : 29
Lakap : mirokral
Kayıt tarihi : 25/10/08
thales
Thales (M.Ö.624 - M.Ö.547)
Written by erdem on 20 Kasım 2007 – 18:47 -
Antik dönemin ünlü filozofudur. ataları Fenikelilerdir.. Son kaynaklar, M.Ö. 625 yılında Milletos’ta doğup, 545′te öldüğünü kabul eder.
Yaşadığı yıllarda; geniş bir araştırma, inceleme, düşünme ve mühendislik yeteneği ile ilginç bir ticari zekası sonucu üne kavuşmuştur. Miletos Okulu’ nun korucusudur.
THALES zamanımıza kadar intikal eden yazılı bir eser bırakmamıştır. Düşünceleri öğrencileri yoluyla zamanımıza kadar intikal etmiştir.
THALES, ARİSTO’ nun (M.Ö. 384,322) eserlerine atfen, fizik ve doğal felsefenin, EUDEME’ nin (Aristo’nun öğrencisi), eserlerine atfen de astronomi ve matematiğin kurucusu kabul
edilir. Bu tür görüşler, konu ile ilgili yayınlarda her geçen yıl hızla yaygınlaşmıştır. Netice itibariyle de THALES’ e mümtaziyet ve ebedilik vasıfları verilmiştir.
THALES’ in astronomide kurucu addedilmesine ve üne kavuşmasına sebep olan olaylardan birisi şudur.
Atina’da M.Ö. 28 Mayıs 585 tarihinde görülebilecek Güneş tutulma olayını, tutulmanın vukuundan önce haber vermiş olmasıdır. Thales’ e büyük ün kazandıran bu olay
Babilleler tarafından bilinmekte idi.
Burada önemli olan, tutulma olayının kendisi değil, haber verenin bu bilgiyi aldığı kaynaktır. Gerçekte: THALES’ in bu bilgiyi eski Mısır ve Mezopotamya’ dan elde ettiğinde bütün
kaynaklar birleşmektedir.
Matematikte kurucu addedilmesine sebep olan bilgileri de şunlardı.
Bir dairenin içine üçgen çizme probleminin çözümü. cisimlerin (piramitlerin) gölgesi yardımıyla yüksekliğinin hesabını. üçgenlerin kenarları ile ilgili bağıntılar ters açıların eşitliği konusu, küresel üçgenlerin bazı özellikleri eşkenar üçgenlerin taban açılarının eşitliği teoremi…
Fizikte kurucu addedilmesine sebep olan bilgileri de şunlardır.
Bazı cisimlerin demir üzerindeki çekim etkisi, Nil Nehri’nin taşmasının nedenlerinin açıklanması.
THALES’e atfedilen ve bilimlerde kurucu unvanını almasına sebep olan bu bilgiler, THALES’ten 2000 yıl kadar önceleri Eski Mısırlılar ve Mezopotamyalılar tarafından bilinmekte idi. THALES, eski Mısır ve Babil’e yaptığı birçok seyahatleri sırasında, buralarda eski dönemlerin bilim ve tekniklerini dönemin bilginlerinden (kahin, katip, rahip) öğrenmiştir. Bu ilk medeniyetlerin, eski imparatorluk dönemlerinden öğrenmiş ve bu suretle Grek felsefesinin, geometri ve astronomisinin gelişmesine ilk çıkış noktası olarak temel kavramlar edinmiştir.
Ülkemizde, diğer antik dönem bilginlerine olduğu gibi THALES’ e mümtaziyet ve ebedilik verilmesine sebep, Batı’ lı kaynakların yayınlarıdır. Değişik bir ifade ile bilgilerimizin noksan olduğu dönemlerin damgasını taşır.
Bize göre: THALES’in bilim tarihindeki yeri ile ilgili gerçekleri şu şekilde özetlemek mümkündür.
THALES, ilk medeniyetlerin beşiği olan eski Mısır bölgesini uzun yıllar dolaşmıştır. Kaynaklardan bazıları. THALES’in Babil bölgesine kadar gittiğini yazar. THALES eski Mısır ve Mezopotamya’ ya yaptığı bu geziler sırasında matematik, astronomi ve fiziğin temel bilgilerini öğrenerek Atina’ ya döndü. Burada, elde ettiği bilgileri önce sistematize, bilahare de kanuniyet (teori) halinde ifade etmiştir.
Bugün için “saçma” olan şu görüşler de THALES’e aittir: “Yeryüzü, suyun üstündedir ve suyun üstünde tahta parçası gİbi durur, dalgalanır.”, “Kehribar da cisimleri çektiği için ruha sahiptir.”
THALES’ in doğa felsefesi ile ilgili görüşlerini, ayrı bir İhtisas dalı olması sonucu burada konu etmiyoruz Ancak şunu belirtelim. THALES, alemin yaratılışı ile ilgili bilgileri ortaya koyan Antik dönemin ilk bilginlerindendir.
Miletos Okulu’nun Kurucu ve Öğretim Üyeleri
Miletos Okulu’nun Kurucu ve Öğretim Üyelerinin önemli özeIIiği, İyonya’ nın önde gelen bilim, kültür ve sanat merkezi olmasıdır. Aynı zamanda “Miletos Okulu” adlı bir bilim kuruluşuna sahip olmasıdır.
Miletos Okulu’ nun kurucusu THALES’ tİr. Bu okulda THALES’in öğrencileri olarak, ANAXIMANDROS (M.ö. 610-543) ve ANAXİMENES (M.Ö. 546 hayatta) yetişmiştir. Kaynaklar, FİSAGOR ‘un da (M.Ö. Sisam 570 -Metapante 500?) bu okulda yetiştiği ve Thales’in öğrencisi olduğunu belirtir.
Miletos okulu kurucu ve öğrencilerinin en önemli özelliği, keskin bir araştırma, gözlem ve derleme gücüne sahip olmalarıdır. Duyup gördükleri olayların açıklanmasını ve yorumlanmasını en iyi şekilde ifade etmişlerdir.
Written by erdem on 20 Kasım 2007 – 18:47 -
Antik dönemin ünlü filozofudur. ataları Fenikelilerdir.. Son kaynaklar, M.Ö. 625 yılında Milletos’ta doğup, 545′te öldüğünü kabul eder.
Yaşadığı yıllarda; geniş bir araştırma, inceleme, düşünme ve mühendislik yeteneği ile ilginç bir ticari zekası sonucu üne kavuşmuştur. Miletos Okulu’ nun korucusudur.
THALES zamanımıza kadar intikal eden yazılı bir eser bırakmamıştır. Düşünceleri öğrencileri yoluyla zamanımıza kadar intikal etmiştir.
THALES, ARİSTO’ nun (M.Ö. 384,322) eserlerine atfen, fizik ve doğal felsefenin, EUDEME’ nin (Aristo’nun öğrencisi), eserlerine atfen de astronomi ve matematiğin kurucusu kabul
edilir. Bu tür görüşler, konu ile ilgili yayınlarda her geçen yıl hızla yaygınlaşmıştır. Netice itibariyle de THALES’ e mümtaziyet ve ebedilik vasıfları verilmiştir.
THALES’ in astronomide kurucu addedilmesine ve üne kavuşmasına sebep olan olaylardan birisi şudur.
Atina’da M.Ö. 28 Mayıs 585 tarihinde görülebilecek Güneş tutulma olayını, tutulmanın vukuundan önce haber vermiş olmasıdır. Thales’ e büyük ün kazandıran bu olay
Babilleler tarafından bilinmekte idi.
Burada önemli olan, tutulma olayının kendisi değil, haber verenin bu bilgiyi aldığı kaynaktır. Gerçekte: THALES’ in bu bilgiyi eski Mısır ve Mezopotamya’ dan elde ettiğinde bütün
kaynaklar birleşmektedir.
Matematikte kurucu addedilmesine sebep olan bilgileri de şunlardı.
Bir dairenin içine üçgen çizme probleminin çözümü. cisimlerin (piramitlerin) gölgesi yardımıyla yüksekliğinin hesabını. üçgenlerin kenarları ile ilgili bağıntılar ters açıların eşitliği konusu, küresel üçgenlerin bazı özellikleri eşkenar üçgenlerin taban açılarının eşitliği teoremi…
Fizikte kurucu addedilmesine sebep olan bilgileri de şunlardır.
Bazı cisimlerin demir üzerindeki çekim etkisi, Nil Nehri’nin taşmasının nedenlerinin açıklanması.
THALES’e atfedilen ve bilimlerde kurucu unvanını almasına sebep olan bu bilgiler, THALES’ten 2000 yıl kadar önceleri Eski Mısırlılar ve Mezopotamyalılar tarafından bilinmekte idi. THALES, eski Mısır ve Babil’e yaptığı birçok seyahatleri sırasında, buralarda eski dönemlerin bilim ve tekniklerini dönemin bilginlerinden (kahin, katip, rahip) öğrenmiştir. Bu ilk medeniyetlerin, eski imparatorluk dönemlerinden öğrenmiş ve bu suretle Grek felsefesinin, geometri ve astronomisinin gelişmesine ilk çıkış noktası olarak temel kavramlar edinmiştir.
Ülkemizde, diğer antik dönem bilginlerine olduğu gibi THALES’ e mümtaziyet ve ebedilik verilmesine sebep, Batı’ lı kaynakların yayınlarıdır. Değişik bir ifade ile bilgilerimizin noksan olduğu dönemlerin damgasını taşır.
Bize göre: THALES’in bilim tarihindeki yeri ile ilgili gerçekleri şu şekilde özetlemek mümkündür.
THALES, ilk medeniyetlerin beşiği olan eski Mısır bölgesini uzun yıllar dolaşmıştır. Kaynaklardan bazıları. THALES’in Babil bölgesine kadar gittiğini yazar. THALES eski Mısır ve Mezopotamya’ ya yaptığı bu geziler sırasında matematik, astronomi ve fiziğin temel bilgilerini öğrenerek Atina’ ya döndü. Burada, elde ettiği bilgileri önce sistematize, bilahare de kanuniyet (teori) halinde ifade etmiştir.
Bugün için “saçma” olan şu görüşler de THALES’e aittir: “Yeryüzü, suyun üstündedir ve suyun üstünde tahta parçası gİbi durur, dalgalanır.”, “Kehribar da cisimleri çektiği için ruha sahiptir.”
THALES’ in doğa felsefesi ile ilgili görüşlerini, ayrı bir İhtisas dalı olması sonucu burada konu etmiyoruz Ancak şunu belirtelim. THALES, alemin yaratılışı ile ilgili bilgileri ortaya koyan Antik dönemin ilk bilginlerindendir.
Miletos Okulu’nun Kurucu ve Öğretim Üyeleri
Miletos Okulu’nun Kurucu ve Öğretim Üyelerinin önemli özeIIiği, İyonya’ nın önde gelen bilim, kültür ve sanat merkezi olmasıdır. Aynı zamanda “Miletos Okulu” adlı bir bilim kuruluşuna sahip olmasıdır.
Miletos Okulu’ nun kurucusu THALES’ tİr. Bu okulda THALES’in öğrencileri olarak, ANAXIMANDROS (M.ö. 610-543) ve ANAXİMENES (M.Ö. 546 hayatta) yetişmiştir. Kaynaklar, FİSAGOR ‘un da (M.Ö. Sisam 570 -Metapante 500?) bu okulda yetiştiği ve Thales’in öğrencisi olduğunu belirtir.
Miletos okulu kurucu ve öğrencilerinin en önemli özelliği, keskin bir araştırma, gözlem ve derleme gücüne sahip olmalarıdır. Duyup gördükleri olayların açıklanmasını ve yorumlanmasını en iyi şekilde ifade etmişlerdir.
mirokral-
Mesaj Sayısı : 254
Yaş : 29
Lakap : mirokral
Kayıt tarihi : 25/10/08
pascal
Pascal (1623 - 1662)
Written by erdem on 20 Kasım 2007 – 19:03 -
Pascal, 19 Haziran 1623 günü Fransa’da Clermont’ta doğdu. Babası kültürlü bir adamdı. Pascal yedi yaşına gelince, babası Paris’e yerleşti. Yedi yaşına gelen parlak çocuk öğrenimine başladı. Kendisi gibi çok güzel ve kültürlü iki kız kardeşi vardı. Özellikle Jak Qualine, Pascal’ın yaşamında önemli rol oynamıştır. Kız kardeşinin bu etkisi bazen iyi, fakat çoğu kötü yönde olmuştur.
Pascal doğduğunda, Descartes yirmi yedi yaşındaydı. Descartes öldükten sonra Pascal daha on iki yıl yaşadı. Newton’dan sadece birkaç yıl önce doğmuştur. Descartes ve Fermat gibi büyük matematikçilerle çağdaş olması bir yerde kendisi için bir şanssızlıktı. Bu nedenle, tek başına oluşturabileceği olasılıklar kuramının keşfini Fermat’la paylaştı. Kendisini harika çocuk diye ünlü yapan yaratıcı geometri fikrini, kendisinden daha az ünlü olan Desargues’dan esinlendi. Daha çok din ve felsefe konularına eğildiği için matematiğe az zaman ayırdı. Kız kardeşi ona bu konuda egemendi. Buna karşın, yapabileceğinin çok daha fazlasını verdi.
Pascal, çok erken gelişen bir çocuktu. Fakat, vücutça oldukça zayıftı. Bunun tersine, kafası çok parlaktı. Öğrenimi başlangıçta çok başarılı geçiyordu. Çok küçük yaşta olmasına rağmen, matematiğe gösterdiği ilgi çok dikkati çekiyordu. Hatta, matematik problemleriyle gece gündüz uğraşmaya başladı. Sağlığının bozulacağından kuşkulanan babası, bir aralık onun matematik çalışmasına engel olduysa da, onun bu davranışı Pascal’ın matematik çalışmasına daha çok yöneltti. Geometri çalışmak için oyunlarını bıraktı. On iki yaşında babasına, geometrinin ne dernek olduğunu sordu. Euclides’in “Elements” adlı geometri kitabını kısa bir zaman içinde yutarcasına bir roman gibi okudu.
Hiç bir yardım görmeden ve hiç bir geometri okumadan, çok küçük yaşta bir üçgenin iç açılarının toplamının 180 derece, yani iki dik açı olduğunu kanıtlamıştır. Daha önce, hiç bir kitabı okumadan, Euclides’in birçok önermesini ispatlamıştı, Yine, Pascal hakkında abartma yapmaktan özellikle kaçınan kız kardeşi Gilbert’in anlattıklarına göre; Pascal Euclides’in ilk otuz iki önermesini Elements adlı kitabındaki sıraya göre bulmuştur. Otuz ikinci önerme ise, bir üçgenin iç açılarının toplamı ile ilgili ispatıdır.
Pascal on dört yaşına gelince, Mersenne tarafından yönetilen ilmi tartışmalara kabul edildi. Bu tartışmaların yapılması, Fransız İlimler Akademisini doğurdu. Pascal kendi kendine bir geometrici olmuştu. Baba Pascal’ın hükümet makamlarıyla boğuşması aileyi kötü duruma düşürdü. Güzel ve parlak kız kardeşi Jacqueline, vergi konusunda babası ile anlaşmazlığa düşen Cardinal de Richelieu’yu eğlendirmek için, önünde oynatılan bir oyunda kendisini tanıtmadan oyuna çıkar. Kendini hayran eden artistin kim olduğunu öğrenen Cardinal, tüm aileyi bağışlar ve ondan sonra baba Pascal’a bir memurluk verir.
Pascal, on altı yaşından önce, 1639 yılında, geometrilerin en güzel teoremini ispat etti. On dokuzuncu yüzyılda yaşayan İngiliz matematikçisi ünlü Sylvester, Pascal’ın bu büyük teoremine “kedi beşiği” adını vermiştir. Pascal, on bir yaşına gelince sesler hakkında bir eser vermiştir. On altı yaşındayken, konikler üzerine bir eser yazarak, ünlü Descartes’i hayretlere düşürmüştür. On sekiz yaşına gelince, şimdi Paris sanayi müzesinde saklanan hesap makinesini bulmuştur. Fizikte, havanın ağırlığını, sıvıların denge halini ve basıncı hakkında Pascal kanunlarını bulmuştur. Apollonius ve başkalarının çalışmalarını birer sonuç kabul eden dört yüz tane önerine ortaya koymuştur. Bu eserin tümü basılamadığı için, bir daha da ele geçmemek üzere kaybolmuştur. Fakat, Leibniz bu eserin bir kopyasını görmüş ve onu inceleme şanslılığına ermiştir. Pascal’ın bu eseri geometrik bir metrik olmayıp bir izdüşüm geometrisidir. Aristo, matematiği çokluklar ilmi diye tanımlıyordu. Oysa Pascal’ın geometrisinde çokluk yoktur.
Pascal, on yedi yaşından ölümü olan otuz dokuz yaşına kadar ızdırapsız ve acısız gün görmedi. Hazımsızlık, mide ağrıları, uykusuzluk, yan uyuklamalar ve bu ağrıların verdiği gece kabusları onu yedi bitirdi. Böyle olmasına karşın, yine de bu ağrılar içinde durmadan çalışıyordu.
Yirmi üç yaşlarında, kız kardeşinin baskı ve etkisiyle Hıristiyan dinine ve bunun içinde bazı tarikatlara girdi. Bu konuda epey sarsıntılar da geçirdi. Fakat, yine onda matematik ağır bastı. Pascal, hurma ağaçları gibi tepeden kurumaya başladı. Aynı yıl hazım organları bozuldu. Bu ara geçici bir felç geçirdi. Bu ona çok ağrılar verdi. Her şeye rağmen, düşüncesi ve kafasının çalışmaları sürüyordu.
1648 yılında Toriçelli’nin (1608 -1647) çalışmalarını inceleyerek, onun da önüne geçti. Yükseklikle basıncın değiştiğini saptadı. Descartes, Pascal’la çeşitli konuları konuşmak ve özellikle barometre hakkında bilgi almak için geldi. Bu iki bilginin yaradılış ve ruhsal durumları pek uyuşmuyordu. Descartes, konikler üzerine yazılan eserin on altı yaşında bir çocuk tarafından yazıldığına inanmayı açıkça kabul etmedi. Daha da ileri giderek, Pascal’ın barometre deneyleri düşüncesini, Mersenne’nin çalışmalarından çalmış olmasından şüphelendi. Descartes’le Pascal’ın aralarında çekememezliğe neden olan üçüncü konu din üzerine olan düşüncelerindeki ayrılıklardı. Descartes Cizvitleri tutuyor, Pascal’sa Jansen’in mezhebini savunuyordu. Pascal’ın açık sözlü kız kardeşi Jacqueline’nin sözlerine bakılırsa, bu iki dahi birbirlerini oldukça kıskanıyorlardı. Bu nedenle de, adı geçen yukarıdaki görüşme ve ziyaret soğuk bir buluşma olmuştu. Descartes’in genç dostuna bazı öğütleri oldu. Pascal da onu ciddiye almadı. 1658 yılının bir gecesinde, uykusuzluk ve diş ağrılarından kıvranan Pascal, kerpetenin egemen olduğu bir zamanda, korkunç ağrılarını unutmak amacıyla, birçok ünlü matematikçinin uğraştığı zarif sikloid eğrisine daldı. Tüm ağrılarının geçtiğini gördü. Ya da, sikloid üzerine o kadar daldı ki, tüm ağrı ve acılarını unuttu. Tam sekiz gün sikloid geometrisi üzerinde çalıştı. Bu eğri ile ilgili olan çeşitli problemleri çözmeyi başardı. Bu buluşlarının bazılarını takma Amos Detonville imzasıyla, Fransız ve İngiliz matematikçilerine meydan ,okumak amacıyla basılmıştır. 1658 yılında kendini oldukça hasta hissetti. Kısa aralıklarla gelen uyuklamalar dışında, şiddetli ve dinmek bilmeyen baş ağrıları ona çok eziyet ediyordu. Tam dört yıl bu ağrılarla kıvrandı. 1662 yılının haziran ayında otuz dokuz yaşındayken öldü. Ölümünden sonra yapılan otopsisinde, ağrılarının nedeninin ciddi bir beyin hastalığından ileri geldiği saptandı.
Pascal, Fermat ile birlikte olasılıklar kuramını kurmakla, yeni bir matematik dünyası yaratmış oluyordu. Bu kuramın tüm inceliklerini ortaya döktü. Bu kuramı oluştururken, Fermat’la sürekli haberleşmişlerdir. Yapılan bu mektup görüşmeleri incelendiğinde, bu kuramın gerçek kurucularının Pascal ile Fermat’ın eşit payları olduğu görülür. Yaptıkları şeyler temelde aynı, fakat derinlemesine inilmeleri ayrı ayrıdır. Bu arada Pascal’ın düştüğü ufak hatayı Fermat belirtince, Pascal da bu hatasını hemen düzeltti. Bu haberleşmedeki ilk mektuplar kaybolmuşsa da, daha sonraki mektuplar hala eldedir.
Bu büyük olasılıklar kuramının çıkış nedeni, Pascal’a kumarbaz Chevalier de Mere tarafından önerilmesiydi. En önemli görevi de elli iki kağıt oyunu oynuyordu. Bu ara tavla zarlarının, şekilleri aynı olan ayrı renkli bilyelerin önemi büyüktür. Buna bağlı olarak, ünlü Pascal üçgeni doğdu. Pascal’ın bu üçgeni, daha sonraki yıllarda çok kullanıldı. Özellikle seri açılımları ve binom açılımı bu yöntemle kolaylıkla bulunur.
1
11
121
1331
14641
Pascal üçgeni, binom açılımındaki katsayıları bulmaya yarar. Pascal’ın bu üçgeni, olasılıklar kuramında da ustalıkla kullanılır. Bu üçgen, biyolojideki uygulamalar, matematik, istatistik ve pek çok modern fizik konularında uygulama alanı bulunur.
Hıristiyan dini, mezhepler ve sonu gelmez ağrılar içinde bir dahi maddi olarak yok olup gitmiştir. Fakat, bıraktıklarıyla yaşamaktadır.
Written by erdem on 20 Kasım 2007 – 19:03 -
Pascal, 19 Haziran 1623 günü Fransa’da Clermont’ta doğdu. Babası kültürlü bir adamdı. Pascal yedi yaşına gelince, babası Paris’e yerleşti. Yedi yaşına gelen parlak çocuk öğrenimine başladı. Kendisi gibi çok güzel ve kültürlü iki kız kardeşi vardı. Özellikle Jak Qualine, Pascal’ın yaşamında önemli rol oynamıştır. Kız kardeşinin bu etkisi bazen iyi, fakat çoğu kötü yönde olmuştur.
Pascal doğduğunda, Descartes yirmi yedi yaşındaydı. Descartes öldükten sonra Pascal daha on iki yıl yaşadı. Newton’dan sadece birkaç yıl önce doğmuştur. Descartes ve Fermat gibi büyük matematikçilerle çağdaş olması bir yerde kendisi için bir şanssızlıktı. Bu nedenle, tek başına oluşturabileceği olasılıklar kuramının keşfini Fermat’la paylaştı. Kendisini harika çocuk diye ünlü yapan yaratıcı geometri fikrini, kendisinden daha az ünlü olan Desargues’dan esinlendi. Daha çok din ve felsefe konularına eğildiği için matematiğe az zaman ayırdı. Kız kardeşi ona bu konuda egemendi. Buna karşın, yapabileceğinin çok daha fazlasını verdi.
Pascal, çok erken gelişen bir çocuktu. Fakat, vücutça oldukça zayıftı. Bunun tersine, kafası çok parlaktı. Öğrenimi başlangıçta çok başarılı geçiyordu. Çok küçük yaşta olmasına rağmen, matematiğe gösterdiği ilgi çok dikkati çekiyordu. Hatta, matematik problemleriyle gece gündüz uğraşmaya başladı. Sağlığının bozulacağından kuşkulanan babası, bir aralık onun matematik çalışmasına engel olduysa da, onun bu davranışı Pascal’ın matematik çalışmasına daha çok yöneltti. Geometri çalışmak için oyunlarını bıraktı. On iki yaşında babasına, geometrinin ne dernek olduğunu sordu. Euclides’in “Elements” adlı geometri kitabını kısa bir zaman içinde yutarcasına bir roman gibi okudu.
Hiç bir yardım görmeden ve hiç bir geometri okumadan, çok küçük yaşta bir üçgenin iç açılarının toplamının 180 derece, yani iki dik açı olduğunu kanıtlamıştır. Daha önce, hiç bir kitabı okumadan, Euclides’in birçok önermesini ispatlamıştı, Yine, Pascal hakkında abartma yapmaktan özellikle kaçınan kız kardeşi Gilbert’in anlattıklarına göre; Pascal Euclides’in ilk otuz iki önermesini Elements adlı kitabındaki sıraya göre bulmuştur. Otuz ikinci önerme ise, bir üçgenin iç açılarının toplamı ile ilgili ispatıdır.
Pascal on dört yaşına gelince, Mersenne tarafından yönetilen ilmi tartışmalara kabul edildi. Bu tartışmaların yapılması, Fransız İlimler Akademisini doğurdu. Pascal kendi kendine bir geometrici olmuştu. Baba Pascal’ın hükümet makamlarıyla boğuşması aileyi kötü duruma düşürdü. Güzel ve parlak kız kardeşi Jacqueline, vergi konusunda babası ile anlaşmazlığa düşen Cardinal de Richelieu’yu eğlendirmek için, önünde oynatılan bir oyunda kendisini tanıtmadan oyuna çıkar. Kendini hayran eden artistin kim olduğunu öğrenen Cardinal, tüm aileyi bağışlar ve ondan sonra baba Pascal’a bir memurluk verir.
Pascal, on altı yaşından önce, 1639 yılında, geometrilerin en güzel teoremini ispat etti. On dokuzuncu yüzyılda yaşayan İngiliz matematikçisi ünlü Sylvester, Pascal’ın bu büyük teoremine “kedi beşiği” adını vermiştir. Pascal, on bir yaşına gelince sesler hakkında bir eser vermiştir. On altı yaşındayken, konikler üzerine bir eser yazarak, ünlü Descartes’i hayretlere düşürmüştür. On sekiz yaşına gelince, şimdi Paris sanayi müzesinde saklanan hesap makinesini bulmuştur. Fizikte, havanın ağırlığını, sıvıların denge halini ve basıncı hakkında Pascal kanunlarını bulmuştur. Apollonius ve başkalarının çalışmalarını birer sonuç kabul eden dört yüz tane önerine ortaya koymuştur. Bu eserin tümü basılamadığı için, bir daha da ele geçmemek üzere kaybolmuştur. Fakat, Leibniz bu eserin bir kopyasını görmüş ve onu inceleme şanslılığına ermiştir. Pascal’ın bu eseri geometrik bir metrik olmayıp bir izdüşüm geometrisidir. Aristo, matematiği çokluklar ilmi diye tanımlıyordu. Oysa Pascal’ın geometrisinde çokluk yoktur.
Pascal, on yedi yaşından ölümü olan otuz dokuz yaşına kadar ızdırapsız ve acısız gün görmedi. Hazımsızlık, mide ağrıları, uykusuzluk, yan uyuklamalar ve bu ağrıların verdiği gece kabusları onu yedi bitirdi. Böyle olmasına karşın, yine de bu ağrılar içinde durmadan çalışıyordu.
Yirmi üç yaşlarında, kız kardeşinin baskı ve etkisiyle Hıristiyan dinine ve bunun içinde bazı tarikatlara girdi. Bu konuda epey sarsıntılar da geçirdi. Fakat, yine onda matematik ağır bastı. Pascal, hurma ağaçları gibi tepeden kurumaya başladı. Aynı yıl hazım organları bozuldu. Bu ara geçici bir felç geçirdi. Bu ona çok ağrılar verdi. Her şeye rağmen, düşüncesi ve kafasının çalışmaları sürüyordu.
1648 yılında Toriçelli’nin (1608 -1647) çalışmalarını inceleyerek, onun da önüne geçti. Yükseklikle basıncın değiştiğini saptadı. Descartes, Pascal’la çeşitli konuları konuşmak ve özellikle barometre hakkında bilgi almak için geldi. Bu iki bilginin yaradılış ve ruhsal durumları pek uyuşmuyordu. Descartes, konikler üzerine yazılan eserin on altı yaşında bir çocuk tarafından yazıldığına inanmayı açıkça kabul etmedi. Daha da ileri giderek, Pascal’ın barometre deneyleri düşüncesini, Mersenne’nin çalışmalarından çalmış olmasından şüphelendi. Descartes’le Pascal’ın aralarında çekememezliğe neden olan üçüncü konu din üzerine olan düşüncelerindeki ayrılıklardı. Descartes Cizvitleri tutuyor, Pascal’sa Jansen’in mezhebini savunuyordu. Pascal’ın açık sözlü kız kardeşi Jacqueline’nin sözlerine bakılırsa, bu iki dahi birbirlerini oldukça kıskanıyorlardı. Bu nedenle de, adı geçen yukarıdaki görüşme ve ziyaret soğuk bir buluşma olmuştu. Descartes’in genç dostuna bazı öğütleri oldu. Pascal da onu ciddiye almadı. 1658 yılının bir gecesinde, uykusuzluk ve diş ağrılarından kıvranan Pascal, kerpetenin egemen olduğu bir zamanda, korkunç ağrılarını unutmak amacıyla, birçok ünlü matematikçinin uğraştığı zarif sikloid eğrisine daldı. Tüm ağrılarının geçtiğini gördü. Ya da, sikloid üzerine o kadar daldı ki, tüm ağrı ve acılarını unuttu. Tam sekiz gün sikloid geometrisi üzerinde çalıştı. Bu eğri ile ilgili olan çeşitli problemleri çözmeyi başardı. Bu buluşlarının bazılarını takma Amos Detonville imzasıyla, Fransız ve İngiliz matematikçilerine meydan ,okumak amacıyla basılmıştır. 1658 yılında kendini oldukça hasta hissetti. Kısa aralıklarla gelen uyuklamalar dışında, şiddetli ve dinmek bilmeyen baş ağrıları ona çok eziyet ediyordu. Tam dört yıl bu ağrılarla kıvrandı. 1662 yılının haziran ayında otuz dokuz yaşındayken öldü. Ölümünden sonra yapılan otopsisinde, ağrılarının nedeninin ciddi bir beyin hastalığından ileri geldiği saptandı.
Pascal, Fermat ile birlikte olasılıklar kuramını kurmakla, yeni bir matematik dünyası yaratmış oluyordu. Bu kuramın tüm inceliklerini ortaya döktü. Bu kuramı oluştururken, Fermat’la sürekli haberleşmişlerdir. Yapılan bu mektup görüşmeleri incelendiğinde, bu kuramın gerçek kurucularının Pascal ile Fermat’ın eşit payları olduğu görülür. Yaptıkları şeyler temelde aynı, fakat derinlemesine inilmeleri ayrı ayrıdır. Bu arada Pascal’ın düştüğü ufak hatayı Fermat belirtince, Pascal da bu hatasını hemen düzeltti. Bu haberleşmedeki ilk mektuplar kaybolmuşsa da, daha sonraki mektuplar hala eldedir.
Bu büyük olasılıklar kuramının çıkış nedeni, Pascal’a kumarbaz Chevalier de Mere tarafından önerilmesiydi. En önemli görevi de elli iki kağıt oyunu oynuyordu. Bu ara tavla zarlarının, şekilleri aynı olan ayrı renkli bilyelerin önemi büyüktür. Buna bağlı olarak, ünlü Pascal üçgeni doğdu. Pascal’ın bu üçgeni, daha sonraki yıllarda çok kullanıldı. Özellikle seri açılımları ve binom açılımı bu yöntemle kolaylıkla bulunur.
1
11
121
1331
14641
Pascal üçgeni, binom açılımındaki katsayıları bulmaya yarar. Pascal’ın bu üçgeni, olasılıklar kuramında da ustalıkla kullanılır. Bu üçgen, biyolojideki uygulamalar, matematik, istatistik ve pek çok modern fizik konularında uygulama alanı bulunur.
Hıristiyan dini, mezhepler ve sonu gelmez ağrılar içinde bir dahi maddi olarak yok olup gitmiştir. Fakat, bıraktıklarıyla yaşamaktadır.
mirokral-
Mesaj Sayısı : 254
Yaş : 29
Lakap : mirokral
Kayıt tarihi : 25/10/08
newton
Isaac Newton (1642 - 1727)
1642 yılında İngiltere'nin Woolsthrope kasabasında dünyaya gelen Newton'un en önemli buluşu, diferansiyel ve integral hesabı keşfetmesidir. Zaten Newton'u dünyada gelip geçmiş üç büyük matematikçiden biri yapan buluşu budur. İşin teknik yönü, üniversitelerde uzun uzun verilir. Bu nedenle, sadece adı bizim için şimdilik yeterlidir. Newton, bir ara teolojiye de ilgi duydu. Bu konuda bazı yorumları ve düşünceleri de vardır.
Newton, 1661 yılının haziran ayında Cambridge'deki Trinity College'e girdi. Giderlerinin bazılarını karşılamak için okulda bazı işlerde çalışıyordu. İç harp İngiltere'de tüm şiddetiyle sürüyordu. Önceleri yavaş, fakat sonraları çabuk olarak kendini toparladı ve çalışmalarına daldı.
Newton'un matematik öğretmeni Isaac Barrow (1630 - 1677), hem ilahiyatçı ve hem de matematikçi biriydi. Matematikte parlak fikirli olan Barrow, öğrencisinin kendisinden çok ileride olduğunu kabul ediyor ve 1669 yılında matematik kürsüsünü bırakıp sırası gelince, yerini o eşsiz büyük deha Newton'a bırakıyordu.
Barrow, geometri derslerinde kendine özgü yöntemlerle, alanları hesaplamak, eğrilere üzerindeki noktalardan teğet çizmek için yollar gösteriyordu. İşte bu dersler Newton'u diferansiyel ve integral hesabı bulmaya ve bu sahada çalışmaya yönelten ilk adımlardır.
Diferansiyel ve integral hesabın bulunmasında, değişken, fonksiyon ve limit kavramı kullanılmıştır. Fonksiyon kelimesini ilk kez Leibniz kullanmıştır. Bugüne kadar da bu sözcük değiştirilmemiştir. Limit fikrini ve kavramını Newton ve Leibniz kullanmıştır. Özellikle Newton bu sahada başarılı olmuştur. Her ikisi de çok yönlü olan bu dahiler, aynı zamanda birbirlerinden habersiz az çok farklılık gösteren yöntemleriyle diferansiyel ve integral hesabı bulmuşlardır.
Isaac Newton, 1727 yılında böbreklerindeki rahatsızlık yüzünden yaşamını yitirdi.
1642 yılında İngiltere'nin Woolsthrope kasabasında dünyaya gelen Newton'un en önemli buluşu, diferansiyel ve integral hesabı keşfetmesidir. Zaten Newton'u dünyada gelip geçmiş üç büyük matematikçiden biri yapan buluşu budur. İşin teknik yönü, üniversitelerde uzun uzun verilir. Bu nedenle, sadece adı bizim için şimdilik yeterlidir. Newton, bir ara teolojiye de ilgi duydu. Bu konuda bazı yorumları ve düşünceleri de vardır.
Newton, 1661 yılının haziran ayında Cambridge'deki Trinity College'e girdi. Giderlerinin bazılarını karşılamak için okulda bazı işlerde çalışıyordu. İç harp İngiltere'de tüm şiddetiyle sürüyordu. Önceleri yavaş, fakat sonraları çabuk olarak kendini toparladı ve çalışmalarına daldı.
Newton'un matematik öğretmeni Isaac Barrow (1630 - 1677), hem ilahiyatçı ve hem de matematikçi biriydi. Matematikte parlak fikirli olan Barrow, öğrencisinin kendisinden çok ileride olduğunu kabul ediyor ve 1669 yılında matematik kürsüsünü bırakıp sırası gelince, yerini o eşsiz büyük deha Newton'a bırakıyordu.
Barrow, geometri derslerinde kendine özgü yöntemlerle, alanları hesaplamak, eğrilere üzerindeki noktalardan teğet çizmek için yollar gösteriyordu. İşte bu dersler Newton'u diferansiyel ve integral hesabı bulmaya ve bu sahada çalışmaya yönelten ilk adımlardır.
Diferansiyel ve integral hesabın bulunmasında, değişken, fonksiyon ve limit kavramı kullanılmıştır. Fonksiyon kelimesini ilk kez Leibniz kullanmıştır. Bugüne kadar da bu sözcük değiştirilmemiştir. Limit fikrini ve kavramını Newton ve Leibniz kullanmıştır. Özellikle Newton bu sahada başarılı olmuştur. Her ikisi de çok yönlü olan bu dahiler, aynı zamanda birbirlerinden habersiz az çok farklılık gösteren yöntemleriyle diferansiyel ve integral hesabı bulmuşlardır.
Isaac Newton, 1727 yılında böbreklerindeki rahatsızlık yüzünden yaşamını yitirdi.
mirokral-
Mesaj Sayısı : 254
Yaş : 29
Lakap : mirokral
Kayıt tarihi : 25/10/08
matematik nedir, ne değildir?
MATEMATİK NEDİR, NE DEĞİLDİR?
İnsanlar arasındaki bir takım gereksinmelerden matematik doğmuştur. Tarihi incelersek; ilk çağlarda bile bugün bilgisayarlarda kullanılan ikili sistemin Mısır aritmetiğinde kullanıldığını görürüz. Yine o çağlarda dairenin çevresini, Nil Nehri’nin taşma zamanlarını saptamak için mevsimleri ve böylece 365 günü içeren takvimlerin hazırlandığını belirleriz. Başka ülkelerin bilimlerini inceleyen yunanlılarda ilk köklü bilgileri mısırlılardan öğrenmiş oldular. Yine geçerliliğini her zaman koruyan “Bir dik açılı üçgenin uzun kenarının karesinin, öteki iki kenarın kareleri toplamına eşit olduğunu” belirten ünlü Pisagor Teoremi M.Ö. 570 yıllarında kanıtlanmıştır. Hintliler bugün de tüm dünyada kullanılan 0 ıda içeren onluk sayı sistemini kurmuşlardır. En büyük Arap matematikçisi El-Harizmi (780-850) cebirin kurucusudur. Orta çağ Avrupa matematiği bu bilginin eserlerinden oluşmaktadır. Araplar dünyaya eski ve çağdaş bilim konusunda eşsiz hizmette bulundular. Hint ve Çin buluşlarını dünyaya tanıttılar. Ancak modern bilimin kurucusu olamadılar.
Tüm ilkel toplumlarda ticaret takastan öte bir nitelik kazanır kazanmaz sayı ve ölçü kavramları gelişti. Sayı kavramı matematiğin temelini oluşturur. Sayılar çiftçilerin ürünlerini sayma gereksinmesinden doğmuştur. Sayılar alışverişi de olanaklı kılan para sistemlerinin ortaya çıkmasına yol açmıştır. Daha sonra yunanlılar matematiksel usa vurmayı mantıksal bir temele oturtarak ve böylece kendilerini kanıtlayıcı olmayan önermelerin, temel varsayımlardan çıkarılabilmesini sağlayarak matematiği kesin bir bilim dalı haline getirdiler. Ayrıca müzik ve resimle ilişkiler kurarak mantıksal düşünüşlerini sanatları da içerecek biçimde genişlettiler. Fakat matematik 16. yüzyıla dek pek fazla gelişmedi. Günümüzde tüm dünya eşi görülmemiş bir değişim yaşamaktadır.
İnsanlar günlük yaşamda sık sık aritmetikten yararlanmakla birlikte üzerinde hemen hemen hiç düşünmezler. Örneğin; günlük dilde kullandığımız bir çok sözcüğün anlamını da pek bilmeyiz. Sorulursa şaşırırız, bocalarız. Aslında düşünmeden yaptığımız bir çok davranışın nedenlerini de araştırmayız. Herhangi bir şey satın alan biri ödediği ücreti ve geri aldığı para üstünü sayarken ticaretin başladığı dönemden beri kullanılan bilgileri kullandığını fark etmez bile, temel toplama ve eşitlik kavramlarını kullandığını düşünmez.
Aritmetiğin dört temel işlemi vardır. Bunlar toplama, çıkarma, çarpma ve bölmedir. Bu dört temel kural yaşamın her safhasında geçerliliğini yitirmez. Okullarımızda birkaç yıldan beri matematik dersleri öğretim programları Modern Matematik adıyla okutulmaktadır. Neden Modern Matematik denildiğini bir türlü anlayamıyorum. Tüm öğrenciler, veliler buna tepki gösteriyor. Tepkinin en fazlası ise “çocuklarımız dört işlemi öğrenemiyorlar” savınadır. Oysa bu sav tümüyle yanlış. Dört işlem de öğretiliyor yaşam için gereksinim duyulan tüm konular da. Öğrencinin sınıfları değiştikçe konuları da değişecektir. Matematikte gelişerek devam edecektir. Her şeyden önemlisi içinde yaşadığımız dünyada bilim, teknik geliştikçe bizde bu değişime ayak uyduracağız. Değişimleri eğitim yaşantımıza uygulamak zorundayız. Dün 20. yüzyıldı bugün 21. yüzyıl. Dün daktilo ile yazıyorduk, bugün bilgisayarla ve dünya parmaklarımızın ucunda.
Biz tekrar dört işleme dönelim. Bunların bir çoğu sadece sağduyu yoluyla ortaya konmuş olan temel yasalar izlenerek yapılır. Değişme özeliği hem toplamada hem çarpmada vardır. Bu yasa yalnızca 7 ile 5 in toplama örneğinde olduğu gibi 7+5 ya da 5 ile toplama örneğindeki 5+7 nin toplamına eşit olduğunu söyler. Başka bir deyişle sayıları toplama sırası önemli değildir. Aynı özelik çarpma işleminde de vardır. 4×3 çarpma işlemi 3×4 olarak gösterilirse sonuç değişmez. Bu bize matematik programının değişmesiyle matematiğe çağdaş bir boyut kazandırdığımızı anlatıyor. Bu boyut matematiğe giren yorumdur. 2×2 her zaman 4 değildir. Çok eskiden televizyonda zevkle izlediğimiz bir dizi vardı.”Gökyüzü Prensleri” Adım adım uçağın evrimini anlatmaktaydı. Burada uçağı evrimleştirenlerin nasıl uğraş verdiklerini izledik. Matematiği kullanarak önce kağıt üzerinde uçağın modelini yaptılar. Yaptıkları matematik işlemleri ile uçağın havada ne kadar kalacağını hesapladılar. Bu bizim matematikte yaptığımız birebir eşleme yöntemidir. Aslında eşelemeye çok daha tanıdık bir çok örnek verebiliriz. Harita dünya üzerindeki noktalarla birebir eşlemedir. Dikkat ettiniz mi? Konuşmaya yeni başlayan bir çocuk elinin parmaklarıyla evdeki insanları eşleyerek sayar. Alışveriş yaptığımızda parayla, aldığımız malı eşleriz.
Sayı kavramı matematiğin temel bir kavramıdır demiştik. Oysa sayı yaşamın temel bir kavramıdır. Tek ile çok arasındaki kavramı çocuk çok iyi kavrar. Deniz kıyısında bir çok çakıl taşı gören bir çocuk bunların arasından sadece bir tane alabilir. Bir avuç aldığı zaman toplamdan az ama bir taneden fazla aldığını bilir. Kaç taşa sahip olduğu konusunda bir fikir edinebilmek için elindeki taşları sayar. Örneğin 15 kalem. Burada “15″ adet bildirmektedir. 15 t0p, 15 martı, 15 ekmek gibi. Sayılabilecek tüm cisimlerin ortak bir özeliğidir. Yetişkin insanlar bir çok temel kavramı anlamakta zorluk çekerler ama çocuklar yaşamlarının ilk evrelerinde bu kavramlar konusunda sezgisel bir anlayışa sahiptirler. Her aile bir kümedir. Anne, baba ve çocuklar. Bir çok ailenin oluşturduğu kümeler topluluğu evrensel kümeyi oluşturur. Her aile alt parçalara ayrılabilir. Bunlara alt kümeler denir. İki küme kesişebilir veya birleşebilir. Oluşan yeni kümelere kesişim veya birleşim kümeleri denir. Küme işlemlerindeki kesişim ve birleşim, mantıktaki niceleyicilerin karşılığıdır. Bu ilişki kümelerdeki bazı önermelerin mantıksal önermelerle ifade edilmesini mümkün kılar. Öyleyse matematik çağdaş yaşamla iç içedir. Her zaman moderndir. Biri diğerinden soyutlanamaz.
Ölçme bugün yaşamımızda büyük bir yer tutar. Fizik dersinde yaptığımız aynı deneyin sonuçlarının farklı gruplarının farklı ölçülerle değerlendirildiğini görürüz. Bu o deneydeki geçerliliği mi kanıtlar? Hayır sadece ölçmede farklılıklar vardır. “Burada en doğru ölçümü kim yapmıştır?” diye sorabiliriz. Yanıt ” Tüm öğrencilerdir.” Farklılık ölçü aletlerinin kullanılış biçiminde kaynaklanmış olabilir. Yeri gelmişken kimin yazdığını bilmediğim bir öyküyü anlatmadan geçemeyeceğim. Dört kişiden biri kimyacı, biri fizikçi, biri matematikçi ve bir diğeri de insan bilimcidir. Her birine birer barometre verilerek bir kilise kulesinin yüksekliğini ölçmeleri söyleniyor. Kimyacı gazlar konusunda her şeyi biliyordu. Kulenin altındaki ve üstündeki hava basınçlarını ölçtü (0-60) metre arasında dedi. Fizikçi pahalı araçları umursamazca kullanmaya alışkındı. Barometresini kuleden aşağı attı ve düşüş süresini ölçerek yüksekliği (22-27) metre arasında hesapladı. Matematikçi kulenin gölgesinin uzunluğunu barometrenin uzunluğu ile karşılaştırdı ve (30-30,5) metre arasında dedi. İnsan bilimci ise barometreyi sattı elde ettiği parayla kilisenin zangocuna birkaç kadeh içki ısmarladı. Ve kule yüksekliğinin 30,4 metre olduğunu öğrendi. Bu öyküden de anlaşılacağı gibi değişik ölçmelerin değişik sonuçlar vereceği ortadadır. Modern dünyada yaşam büyük ölçüde insanın kesin ölçümler yapabilme yeteneğine bağlıdır. Dünyanın çeşitli yerlerinde ölçümler için uzunluk, zaman, kütle, gerilim ve bir çokları için standart ölçü birimleri kullanılır. Bunun sonucu olarak Japonya’da yapılan bir mil yatağı beş yıl önce Almanya’da yapılmış olan bir motor miline tıpatıp uyabilir.
Sümerler bir elin parmakları olan 10 sayısını ve onluk sayma sistemini kullanmışlardır. 12 aralığını bularak zamanı saatle, 60 sayısından yararlanarak zamanı ölçen saati, dakikayı, saniyeyi bulmuşlardır. Hiçbir şey birden ortaya çıkmamıştır. Ama matematik bir gereksinmedir. Yaşamın bir parçasıdır. Yaşamın her evresi matematiktir. Doğru düşünme kurallarını öğretir. Düşünce ile somut kavramlar arasında bağıntı kurar. Sosyal ve bilimsel gelişme sürecini çabuklaştırır. İnsan zekasını geliştirir. Bunun en yakın örneği; 10 yaşındaki bir öğrencinin bir üniversitenin matematik bursunu kazanmasıdır. Aslında her çocuk doğduğunda bir harikadır. Onu işlemek yaşamın en ileri seviyesine götürmek eğitmek güç iştir. Kendimizden vermeden, sürekli alarak hem matematik hem de hiçbir şey öğretilemez. Başarılı olmak değil, öğrenmek bile mümkün değildir. Matematik tüm yaşamdır. Yaşamı seviyoruz, öyleyse matematiği de sevmeliyiz. önermesinin doğruluk değeri daima 1 olmalıdır. Gelişen, değişen, hem de hızla değişen dünyaya seyirci kalamayız.
Büyük insan önderimiz Atatürk matematiği dilimizde daha anlaşılır bir biçime getirmiştir. Ona yaşamımızı borçluyuz. Bizzat kendisi matematikte kullanılan terimlerin adlarını bizim anlayabileceğimiz günlük konuşma dilimize çevirmiştir. Bugün doğru düşünebiliyorsak onun sayesindedir. İleriyi gören bakışları sayesinde bizi uygarlık seviyesinin üstüne çıkarmıştır. Bugün bilimin her dalında araştırma yapıp dünyaya kendini kanıtlamış bilim adamlarımız vardır. Ulusumuzu, vatanımızı her şeyden önemlisi insanlarımızı severek sürdür düğümüz eğitim ve öğretimimizde her an öğrenmeğe araştırmaya ve uygar olmaya özen göstermeliyiz. Matematik yaşamın kendisidir.
İnsanlar arasındaki bir takım gereksinmelerden matematik doğmuştur. Tarihi incelersek; ilk çağlarda bile bugün bilgisayarlarda kullanılan ikili sistemin Mısır aritmetiğinde kullanıldığını görürüz. Yine o çağlarda dairenin çevresini, Nil Nehri’nin taşma zamanlarını saptamak için mevsimleri ve böylece 365 günü içeren takvimlerin hazırlandığını belirleriz. Başka ülkelerin bilimlerini inceleyen yunanlılarda ilk köklü bilgileri mısırlılardan öğrenmiş oldular. Yine geçerliliğini her zaman koruyan “Bir dik açılı üçgenin uzun kenarının karesinin, öteki iki kenarın kareleri toplamına eşit olduğunu” belirten ünlü Pisagor Teoremi M.Ö. 570 yıllarında kanıtlanmıştır. Hintliler bugün de tüm dünyada kullanılan 0 ıda içeren onluk sayı sistemini kurmuşlardır. En büyük Arap matematikçisi El-Harizmi (780-850) cebirin kurucusudur. Orta çağ Avrupa matematiği bu bilginin eserlerinden oluşmaktadır. Araplar dünyaya eski ve çağdaş bilim konusunda eşsiz hizmette bulundular. Hint ve Çin buluşlarını dünyaya tanıttılar. Ancak modern bilimin kurucusu olamadılar.
Tüm ilkel toplumlarda ticaret takastan öte bir nitelik kazanır kazanmaz sayı ve ölçü kavramları gelişti. Sayı kavramı matematiğin temelini oluşturur. Sayılar çiftçilerin ürünlerini sayma gereksinmesinden doğmuştur. Sayılar alışverişi de olanaklı kılan para sistemlerinin ortaya çıkmasına yol açmıştır. Daha sonra yunanlılar matematiksel usa vurmayı mantıksal bir temele oturtarak ve böylece kendilerini kanıtlayıcı olmayan önermelerin, temel varsayımlardan çıkarılabilmesini sağlayarak matematiği kesin bir bilim dalı haline getirdiler. Ayrıca müzik ve resimle ilişkiler kurarak mantıksal düşünüşlerini sanatları da içerecek biçimde genişlettiler. Fakat matematik 16. yüzyıla dek pek fazla gelişmedi. Günümüzde tüm dünya eşi görülmemiş bir değişim yaşamaktadır.
İnsanlar günlük yaşamda sık sık aritmetikten yararlanmakla birlikte üzerinde hemen hemen hiç düşünmezler. Örneğin; günlük dilde kullandığımız bir çok sözcüğün anlamını da pek bilmeyiz. Sorulursa şaşırırız, bocalarız. Aslında düşünmeden yaptığımız bir çok davranışın nedenlerini de araştırmayız. Herhangi bir şey satın alan biri ödediği ücreti ve geri aldığı para üstünü sayarken ticaretin başladığı dönemden beri kullanılan bilgileri kullandığını fark etmez bile, temel toplama ve eşitlik kavramlarını kullandığını düşünmez.
Aritmetiğin dört temel işlemi vardır. Bunlar toplama, çıkarma, çarpma ve bölmedir. Bu dört temel kural yaşamın her safhasında geçerliliğini yitirmez. Okullarımızda birkaç yıldan beri matematik dersleri öğretim programları Modern Matematik adıyla okutulmaktadır. Neden Modern Matematik denildiğini bir türlü anlayamıyorum. Tüm öğrenciler, veliler buna tepki gösteriyor. Tepkinin en fazlası ise “çocuklarımız dört işlemi öğrenemiyorlar” savınadır. Oysa bu sav tümüyle yanlış. Dört işlem de öğretiliyor yaşam için gereksinim duyulan tüm konular da. Öğrencinin sınıfları değiştikçe konuları da değişecektir. Matematikte gelişerek devam edecektir. Her şeyden önemlisi içinde yaşadığımız dünyada bilim, teknik geliştikçe bizde bu değişime ayak uyduracağız. Değişimleri eğitim yaşantımıza uygulamak zorundayız. Dün 20. yüzyıldı bugün 21. yüzyıl. Dün daktilo ile yazıyorduk, bugün bilgisayarla ve dünya parmaklarımızın ucunda.
Biz tekrar dört işleme dönelim. Bunların bir çoğu sadece sağduyu yoluyla ortaya konmuş olan temel yasalar izlenerek yapılır. Değişme özeliği hem toplamada hem çarpmada vardır. Bu yasa yalnızca 7 ile 5 in toplama örneğinde olduğu gibi 7+5 ya da 5 ile toplama örneğindeki 5+7 nin toplamına eşit olduğunu söyler. Başka bir deyişle sayıları toplama sırası önemli değildir. Aynı özelik çarpma işleminde de vardır. 4×3 çarpma işlemi 3×4 olarak gösterilirse sonuç değişmez. Bu bize matematik programının değişmesiyle matematiğe çağdaş bir boyut kazandırdığımızı anlatıyor. Bu boyut matematiğe giren yorumdur. 2×2 her zaman 4 değildir. Çok eskiden televizyonda zevkle izlediğimiz bir dizi vardı.”Gökyüzü Prensleri” Adım adım uçağın evrimini anlatmaktaydı. Burada uçağı evrimleştirenlerin nasıl uğraş verdiklerini izledik. Matematiği kullanarak önce kağıt üzerinde uçağın modelini yaptılar. Yaptıkları matematik işlemleri ile uçağın havada ne kadar kalacağını hesapladılar. Bu bizim matematikte yaptığımız birebir eşleme yöntemidir. Aslında eşelemeye çok daha tanıdık bir çok örnek verebiliriz. Harita dünya üzerindeki noktalarla birebir eşlemedir. Dikkat ettiniz mi? Konuşmaya yeni başlayan bir çocuk elinin parmaklarıyla evdeki insanları eşleyerek sayar. Alışveriş yaptığımızda parayla, aldığımız malı eşleriz.
Sayı kavramı matematiğin temel bir kavramıdır demiştik. Oysa sayı yaşamın temel bir kavramıdır. Tek ile çok arasındaki kavramı çocuk çok iyi kavrar. Deniz kıyısında bir çok çakıl taşı gören bir çocuk bunların arasından sadece bir tane alabilir. Bir avuç aldığı zaman toplamdan az ama bir taneden fazla aldığını bilir. Kaç taşa sahip olduğu konusunda bir fikir edinebilmek için elindeki taşları sayar. Örneğin 15 kalem. Burada “15″ adet bildirmektedir. 15 t0p, 15 martı, 15 ekmek gibi. Sayılabilecek tüm cisimlerin ortak bir özeliğidir. Yetişkin insanlar bir çok temel kavramı anlamakta zorluk çekerler ama çocuklar yaşamlarının ilk evrelerinde bu kavramlar konusunda sezgisel bir anlayışa sahiptirler. Her aile bir kümedir. Anne, baba ve çocuklar. Bir çok ailenin oluşturduğu kümeler topluluğu evrensel kümeyi oluşturur. Her aile alt parçalara ayrılabilir. Bunlara alt kümeler denir. İki küme kesişebilir veya birleşebilir. Oluşan yeni kümelere kesişim veya birleşim kümeleri denir. Küme işlemlerindeki kesişim ve birleşim, mantıktaki niceleyicilerin karşılığıdır. Bu ilişki kümelerdeki bazı önermelerin mantıksal önermelerle ifade edilmesini mümkün kılar. Öyleyse matematik çağdaş yaşamla iç içedir. Her zaman moderndir. Biri diğerinden soyutlanamaz.
Ölçme bugün yaşamımızda büyük bir yer tutar. Fizik dersinde yaptığımız aynı deneyin sonuçlarının farklı gruplarının farklı ölçülerle değerlendirildiğini görürüz. Bu o deneydeki geçerliliği mi kanıtlar? Hayır sadece ölçmede farklılıklar vardır. “Burada en doğru ölçümü kim yapmıştır?” diye sorabiliriz. Yanıt ” Tüm öğrencilerdir.” Farklılık ölçü aletlerinin kullanılış biçiminde kaynaklanmış olabilir. Yeri gelmişken kimin yazdığını bilmediğim bir öyküyü anlatmadan geçemeyeceğim. Dört kişiden biri kimyacı, biri fizikçi, biri matematikçi ve bir diğeri de insan bilimcidir. Her birine birer barometre verilerek bir kilise kulesinin yüksekliğini ölçmeleri söyleniyor. Kimyacı gazlar konusunda her şeyi biliyordu. Kulenin altındaki ve üstündeki hava basınçlarını ölçtü (0-60) metre arasında dedi. Fizikçi pahalı araçları umursamazca kullanmaya alışkındı. Barometresini kuleden aşağı attı ve düşüş süresini ölçerek yüksekliği (22-27) metre arasında hesapladı. Matematikçi kulenin gölgesinin uzunluğunu barometrenin uzunluğu ile karşılaştırdı ve (30-30,5) metre arasında dedi. İnsan bilimci ise barometreyi sattı elde ettiği parayla kilisenin zangocuna birkaç kadeh içki ısmarladı. Ve kule yüksekliğinin 30,4 metre olduğunu öğrendi. Bu öyküden de anlaşılacağı gibi değişik ölçmelerin değişik sonuçlar vereceği ortadadır. Modern dünyada yaşam büyük ölçüde insanın kesin ölçümler yapabilme yeteneğine bağlıdır. Dünyanın çeşitli yerlerinde ölçümler için uzunluk, zaman, kütle, gerilim ve bir çokları için standart ölçü birimleri kullanılır. Bunun sonucu olarak Japonya’da yapılan bir mil yatağı beş yıl önce Almanya’da yapılmış olan bir motor miline tıpatıp uyabilir.
Sümerler bir elin parmakları olan 10 sayısını ve onluk sayma sistemini kullanmışlardır. 12 aralığını bularak zamanı saatle, 60 sayısından yararlanarak zamanı ölçen saati, dakikayı, saniyeyi bulmuşlardır. Hiçbir şey birden ortaya çıkmamıştır. Ama matematik bir gereksinmedir. Yaşamın bir parçasıdır. Yaşamın her evresi matematiktir. Doğru düşünme kurallarını öğretir. Düşünce ile somut kavramlar arasında bağıntı kurar. Sosyal ve bilimsel gelişme sürecini çabuklaştırır. İnsan zekasını geliştirir. Bunun en yakın örneği; 10 yaşındaki bir öğrencinin bir üniversitenin matematik bursunu kazanmasıdır. Aslında her çocuk doğduğunda bir harikadır. Onu işlemek yaşamın en ileri seviyesine götürmek eğitmek güç iştir. Kendimizden vermeden, sürekli alarak hem matematik hem de hiçbir şey öğretilemez. Başarılı olmak değil, öğrenmek bile mümkün değildir. Matematik tüm yaşamdır. Yaşamı seviyoruz, öyleyse matematiği de sevmeliyiz. önermesinin doğruluk değeri daima 1 olmalıdır. Gelişen, değişen, hem de hızla değişen dünyaya seyirci kalamayız.
Büyük insan önderimiz Atatürk matematiği dilimizde daha anlaşılır bir biçime getirmiştir. Ona yaşamımızı borçluyuz. Bizzat kendisi matematikte kullanılan terimlerin adlarını bizim anlayabileceğimiz günlük konuşma dilimize çevirmiştir. Bugün doğru düşünebiliyorsak onun sayesindedir. İleriyi gören bakışları sayesinde bizi uygarlık seviyesinin üstüne çıkarmıştır. Bugün bilimin her dalında araştırma yapıp dünyaya kendini kanıtlamış bilim adamlarımız vardır. Ulusumuzu, vatanımızı her şeyden önemlisi insanlarımızı severek sürdür düğümüz eğitim ve öğretimimizde her an öğrenmeğe araştırmaya ve uygar olmaya özen göstermeliyiz. Matematik yaşamın kendisidir.
mirokral-
Mesaj Sayısı : 254
Yaş : 29
Lakap : mirokral
Kayıt tarihi : 25/10/08
karl friedrich gauss
Carl Friedrich Gauss
Carl Friedrich Gauss, 30 Nisan 1777, Braunschweig'de (Almanya) doğdu - 23 Şubat 1855 Göttingen'de ölmüş.
"Matematikçilerin Prensi" olarak anılan Gauss, 1777'de Almanya'da doğdu. Gauss'un dehası çok erken yaşlarda kendini göstermiş ve konuşmayı öğrenmeden önce toplama ve çıkarma yapmayı öğrenmiştir. Güç koşullar altında sürdürdüğü eğitimini, 14 yaşında bir asilin sağladığı destekle güvence altına alabilmiştir. 16 yaşında Eukleides Geometrisi'nin alternatifi olacak yeni bir geometri tasarlamış ve 18 yaşındayken Lagrange ve Newton'un eserlerini incelemiştir.
Üniversitede öğrenciyken, sadece pergel ve cetvel kullanarak onyedi kenarlı düzgün bir çokgenin çizilmesi metodunu bulmuştur. Bu buluşundan çok mutlu olmuş ve mezarının üzerine bu çokgenin oyulmasını istemiştir. Archimedes tarafından başlatılan bu geleneğin bir matematikçiyi etkilediği anlaşılmaktadır.
Sayılar teorisi üzerine yazmış olduğu ilk büyük eseri "Disquistiones Aritmeticae (Aritmetik araştırmaları) ona şimdiki ününü kazandırmıştır. Eseri okuyan Lagrange, Gauss'a şunları yazmıştır:
Eseriniz sizi bir anda birinci sınıf matematikçiler arasına yükseltmiştir. Uzun zamandan beri yapılmış en güzel analitik keşfi ihtiva eden son bölümü çok önemli kabul ediyorum.
Gauss'un bu yapıtı modern sayılar teorisine temel olmuştur. Ona göre, sayılar teorisi çok önemlidir: "Matematik, bilimlerin kraliçesi olduğu gibi, sayılar teorisi de matematiğin kraliçesidir." Gauss, 1795 yılının Ekim ayında liseyi bitirip Göttingen Üniversitesi'ne gireceği zaman, matematiği mi yoksa filolojiyi mi seçeceğini bilemiyordu. Onsekiz yaşında en küçük kareler yöntemini bugünkü jeodeziye sokmuştu. Gauss bu keşfin şerefini, 1806 yılında yöntemini yayınlayan Legendre ile paylaşır.
Normal dağılıma ait Gauss kanunu ve çan eğrisi artık bilinen buluşlarıdır. Gauss, 1796'da filolojiyi tamamen bırakmış ve ilk tarihi yazısı, düzgün onyedi kenarlı çokgen hakkındaki keşfini deftere yazmıştı. Bu hatıra defteri, Gauss'un ölümünden ancak kırküç yıl sonra 1898 yılında torunlarından biri tarafından Göttingen Krallık Kurumuna, defteri incelenmek için gönderildiği zaman ortaya çıktı. On dokuz sayfalık bu defterde, kısa kısa yazılmış yüz kırk altı tane keşif yazılıydı.
Bu keşiflerin en sonuncusu 9 Temmuz 1814 tarihlidir. Bu defter 1917 yılında olduğu gibi yayınlanmış ve yetkili kimselerce bu buluşların genişçe bir incelenmesi yapılmıştır. Eğer bu buluşlar Gauss'un zamanında yayınlansaydı, bazı kimselere şöhret kapıları açılabilirdi. Çünkü, Gauss, birçok matematikçinin öncüsü ve ilham kaynağıydı. Kendisi şüphesiz böyle bir düşüncede değildi ama, gerçek buydu. Bugün, bunu kanıtlayan yazılı belgeler vardır. Adı geçen defterde çok güzel cebirsel bağlılıklar görülmüştür.
Gauss'un doktora tezi, bugün cebirin temel teoremi adıyla bilinen teoremdir. Yani, n dereceli bir polinomun tam n tane kökü vardır. Cebirsel bir denklemin kökünün a + ib şeklinde olduğunu da Gauss göstermiştir. Böylece, karmaşık düzlemi kurmuş ve karmaşık sayılar bu düzlemde gösterilmiştir. Bu düzleme çoğu kez Gauss düzlemi de denir. Ayrıca,
i•i = i² = -1
gösterimini o kullanmıştır. Gauss'un hayatının son yıllarına ait yazmış olduğu mektupların büyük bir kısmı öldükten sonra yayınlanmıştır. Gauss'un bir yanlış davranışı da, Abel'de olduğu gibi genç matematikçilerin çalışmalarına kulak asmamasıydı. Örneğin, Cauchy, karmaşık değişkenli fonksiyonlara ait ünlü ve zarif buluşlarını yayınlamaya başladığında ona karşı isteksiz ve bu yayınlardan habersizdi.
Cauchy'den hiç söz bile etmedi. Çünkü, Cauchy bu konuya başlamadan yıllarca önce, Gauss problemin en can alıcı noktasına erişmişti. Fakat onun ünlü not defterinde saklı kalmıştı. Bunun gibi daha başka örnekler de vardır. Hamilton'un kuaterniyonlar hakkındaki çalışması Gauss'un ölümünden üç yıl önce 1852 yılında Gauss'a sunulduğunda hiç bir şey söylememiştir.
Çünkü, bu sonuçta kendi not defterinde otuz yıldan beri yazılı bulunmaktaydı. Yine bu konuda öncü olduğunu ileri sürmemiştir. Hamilton'un onbeş yıl kadar uğraştığı buluşları için, Gauss ne kadar uğraştığını söylemiyordu. Gauss'un yazdığı eserleri şöyle sıralayabiliriz.
1800 - 1820 yılları arasında astronomi,
1820 - 1830 yılları arasında jeodezi, yüzeyler kuramı, konform dönüşümleri
1830 - 1840 yılları arasında fizik, matematik, elekromanyetizm, yerkürenin manyetizmi ve Newton kanunlarına göre çekme kuramı,
1841 - 1855 yılları arasında durum geometrisi ve karmaşık değişkenli fonksiyonlar, bu fonksiyonlara bağlı geometri dallarında eserler vermiştir.
En ünlü jeodezi Gauss'undur. Gauss'tan önce Euler, Lagrange ve Monge bazı eğrisel yüzeyleri incelemişlerdi. Fakat, Gauss daha genel olarak incelemiş ve diferansiyel geometrinin birinci büyük devresi böylece doğmuştu.
İkinci devre 1854 yılında Riemann geometrisi ile olmuştur. Eğrilik, normal ve parametrelenme önemli işlediği konulardır. Konform dönüşümler yine Gauss'a aittir.
Haritacılık, enlem ve boylam üzerine çalışmaları yine Gauss tarafından bulunmuştur. Gauss, 1855'de hayatı kaybettiğinde Avrupa'daki tüm dostları cenazesine geldi. Matematik ülkesinde, onun eserleri ve buluşları yaşayacaktır.
Carl Friedrich Gauss, 30 Nisan 1777, Braunschweig'de (Almanya) doğdu - 23 Şubat 1855 Göttingen'de ölmüş.
"Matematikçilerin Prensi" olarak anılan Gauss, 1777'de Almanya'da doğdu. Gauss'un dehası çok erken yaşlarda kendini göstermiş ve konuşmayı öğrenmeden önce toplama ve çıkarma yapmayı öğrenmiştir. Güç koşullar altında sürdürdüğü eğitimini, 14 yaşında bir asilin sağladığı destekle güvence altına alabilmiştir. 16 yaşında Eukleides Geometrisi'nin alternatifi olacak yeni bir geometri tasarlamış ve 18 yaşındayken Lagrange ve Newton'un eserlerini incelemiştir.
Üniversitede öğrenciyken, sadece pergel ve cetvel kullanarak onyedi kenarlı düzgün bir çokgenin çizilmesi metodunu bulmuştur. Bu buluşundan çok mutlu olmuş ve mezarının üzerine bu çokgenin oyulmasını istemiştir. Archimedes tarafından başlatılan bu geleneğin bir matematikçiyi etkilediği anlaşılmaktadır.
Sayılar teorisi üzerine yazmış olduğu ilk büyük eseri "Disquistiones Aritmeticae (Aritmetik araştırmaları) ona şimdiki ününü kazandırmıştır. Eseri okuyan Lagrange, Gauss'a şunları yazmıştır:
Eseriniz sizi bir anda birinci sınıf matematikçiler arasına yükseltmiştir. Uzun zamandan beri yapılmış en güzel analitik keşfi ihtiva eden son bölümü çok önemli kabul ediyorum.
Gauss'un bu yapıtı modern sayılar teorisine temel olmuştur. Ona göre, sayılar teorisi çok önemlidir: "Matematik, bilimlerin kraliçesi olduğu gibi, sayılar teorisi de matematiğin kraliçesidir." Gauss, 1795 yılının Ekim ayında liseyi bitirip Göttingen Üniversitesi'ne gireceği zaman, matematiği mi yoksa filolojiyi mi seçeceğini bilemiyordu. Onsekiz yaşında en küçük kareler yöntemini bugünkü jeodeziye sokmuştu. Gauss bu keşfin şerefini, 1806 yılında yöntemini yayınlayan Legendre ile paylaşır.
Normal dağılıma ait Gauss kanunu ve çan eğrisi artık bilinen buluşlarıdır. Gauss, 1796'da filolojiyi tamamen bırakmış ve ilk tarihi yazısı, düzgün onyedi kenarlı çokgen hakkındaki keşfini deftere yazmıştı. Bu hatıra defteri, Gauss'un ölümünden ancak kırküç yıl sonra 1898 yılında torunlarından biri tarafından Göttingen Krallık Kurumuna, defteri incelenmek için gönderildiği zaman ortaya çıktı. On dokuz sayfalık bu defterde, kısa kısa yazılmış yüz kırk altı tane keşif yazılıydı.
Bu keşiflerin en sonuncusu 9 Temmuz 1814 tarihlidir. Bu defter 1917 yılında olduğu gibi yayınlanmış ve yetkili kimselerce bu buluşların genişçe bir incelenmesi yapılmıştır. Eğer bu buluşlar Gauss'un zamanında yayınlansaydı, bazı kimselere şöhret kapıları açılabilirdi. Çünkü, Gauss, birçok matematikçinin öncüsü ve ilham kaynağıydı. Kendisi şüphesiz böyle bir düşüncede değildi ama, gerçek buydu. Bugün, bunu kanıtlayan yazılı belgeler vardır. Adı geçen defterde çok güzel cebirsel bağlılıklar görülmüştür.
Gauss'un doktora tezi, bugün cebirin temel teoremi adıyla bilinen teoremdir. Yani, n dereceli bir polinomun tam n tane kökü vardır. Cebirsel bir denklemin kökünün a + ib şeklinde olduğunu da Gauss göstermiştir. Böylece, karmaşık düzlemi kurmuş ve karmaşık sayılar bu düzlemde gösterilmiştir. Bu düzleme çoğu kez Gauss düzlemi de denir. Ayrıca,
i•i = i² = -1
gösterimini o kullanmıştır. Gauss'un hayatının son yıllarına ait yazmış olduğu mektupların büyük bir kısmı öldükten sonra yayınlanmıştır. Gauss'un bir yanlış davranışı da, Abel'de olduğu gibi genç matematikçilerin çalışmalarına kulak asmamasıydı. Örneğin, Cauchy, karmaşık değişkenli fonksiyonlara ait ünlü ve zarif buluşlarını yayınlamaya başladığında ona karşı isteksiz ve bu yayınlardan habersizdi.
Cauchy'den hiç söz bile etmedi. Çünkü, Cauchy bu konuya başlamadan yıllarca önce, Gauss problemin en can alıcı noktasına erişmişti. Fakat onun ünlü not defterinde saklı kalmıştı. Bunun gibi daha başka örnekler de vardır. Hamilton'un kuaterniyonlar hakkındaki çalışması Gauss'un ölümünden üç yıl önce 1852 yılında Gauss'a sunulduğunda hiç bir şey söylememiştir.
Çünkü, bu sonuçta kendi not defterinde otuz yıldan beri yazılı bulunmaktaydı. Yine bu konuda öncü olduğunu ileri sürmemiştir. Hamilton'un onbeş yıl kadar uğraştığı buluşları için, Gauss ne kadar uğraştığını söylemiyordu. Gauss'un yazdığı eserleri şöyle sıralayabiliriz.
1800 - 1820 yılları arasında astronomi,
1820 - 1830 yılları arasında jeodezi, yüzeyler kuramı, konform dönüşümleri
1830 - 1840 yılları arasında fizik, matematik, elekromanyetizm, yerkürenin manyetizmi ve Newton kanunlarına göre çekme kuramı,
1841 - 1855 yılları arasında durum geometrisi ve karmaşık değişkenli fonksiyonlar, bu fonksiyonlara bağlı geometri dallarında eserler vermiştir.
En ünlü jeodezi Gauss'undur. Gauss'tan önce Euler, Lagrange ve Monge bazı eğrisel yüzeyleri incelemişlerdi. Fakat, Gauss daha genel olarak incelemiş ve diferansiyel geometrinin birinci büyük devresi böylece doğmuştu.
İkinci devre 1854 yılında Riemann geometrisi ile olmuştur. Eğrilik, normal ve parametrelenme önemli işlediği konulardır. Konform dönüşümler yine Gauss'a aittir.
Haritacılık, enlem ve boylam üzerine çalışmaları yine Gauss tarafından bulunmuştur. Gauss, 1855'de hayatı kaybettiğinde Avrupa'daki tüm dostları cenazesine geldi. Matematik ülkesinde, onun eserleri ve buluşları yaşayacaktır.
mirokral-
Mesaj Sayısı : 254
Yaş : 29
Lakap : mirokral
Kayıt tarihi : 25/10/08
Geri: thomas alwa edison
çok saolL mirhan da senin konular birbirine mi girmiş naapmış??
NrShSt.Sh€yDa-
Mesaj Sayısı : 195
Yaş : 32
Nerden : KüBa'DaN!!!
Lakap : __MüLTeCi__
Kayıt tarihi : 24/10/08
Geri: thomas alwa edison
aLLah mirhannnnnnnnnnnn xD hiç eqLenceLi deeLsin xD kim okuycak bunu on saat xD ama yinede saoL emeqe sayqı ödewm oLursa kuLLanırm thanks xD
!qothic--qirL!- Mesaj Sayısı : 51
Nerden : Kırşehir
Kayıt tarihi : 28/10/08
NrShSt.Sh€yDa-
Mesaj Sayısı : 195
Yaş : 32
Nerden : KüBa'DaN!!!
Lakap : __MüLTeCi__
Kayıt tarihi : 24/10/08
Geri: thomas alwa edison
siz ne anlarsınız matematik bir yaşam biçimidir ve gerekirse matematik için ölünür
mirokral-
Mesaj Sayısı : 254
Yaş : 29
Lakap : mirokral
Kayıt tarihi : 25/10/08
Geri: thomas alwa edison
saol burkay banladığın için
mirokral-
Mesaj Sayısı : 254
Yaş : 29
Lakap : mirokral
Kayıt tarihi : 25/10/08
Geri: thomas alwa edison
uGuR4040 demiş ki:müthiş paylaşım
mirokral-
Mesaj Sayısı : 254
Yaş : 29
Lakap : mirokral
Kayıt tarihi : 25/10/08
Geri: thomas alwa edison
Olm bunu okuayan kdr babam gelir veee....
SmiLe-
Mesaj Sayısı : 122
Yaş : 29
Nerden : UZAYDANN
İş/Hobiler : !NC3 !ş...
Lakap : PCkopat
Kayıt tarihi : 30/10/08
Geri: thomas alwa edison
pcyi açık görürse kötü olur
SmiLe-
Mesaj Sayısı : 122
Yaş : 29
Nerden : UZAYDANN
İş/Hobiler : !NC3 !ş...
Lakap : PCkopat
Kayıt tarihi : 30/10/08
Geri: thomas alwa edison
alper böyle yararlı konuları da batırıon ya artık ben sana ne diim
mirokral-
Mesaj Sayısı : 254
Yaş : 29
Lakap : mirokral
Kayıt tarihi : 25/10/08
1 sayfadaki 1 sayfası
Bu forumun müsaadesi var:
Bu forumdaki mesajlara cevap veremezsiniz